Pfiffige Schichtsysteme für Solarhäuser
EU-Projekte steigern Haltbarkeit und Effizienz von flexiblen Solarzellen.
Die Energiewende erfordert nachhaltige Lösungen, um den Energiebedarf von Gebäuden zu senken und die CO2-Bilanz zu verbessern. Eine Schlüsselrolle spielt dabei die Solarenergie etwa mit Perowskit-Solarzellen. Diese Zellen bieten großes Potenzial für gebäudeintegrierte Photovoltaik, da sie flexibel, leicht und kostengünstig herzustellen sind und mit enormen Effizienzfortschritten in den letzten Jahren beeindrucken. Auf dem Weg vom Labormuster hin zu in der Praxis einsetzbaren Photovoltaik-Modulen sind jedoch weitere Anstrengungen hinsichtlich Haltbarkeit und Stabilität erforderlich. Ebenso bieten flexible organische Solarzellen großes Potenzial zur Gebäudeintegration, können aber hinsichtlich Effizienz und Lebensdauer noch optimiert werden. Das Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP forscht daher im Rahmen der zwei EU-geförderten Projekte Pearl und Booster an neuen Materialien und Beschichtungstechnologien, um nachhaltige, langlebige Solarlösungen für den Bau- und Gebäudesektor zu entwickeln.
Im Rahmen des EU-geförderten Projekts Pearl entwickelt das Fraunhofer FEP gemeinsam mit internationalen Partnern unter Koordination des finnischen VTT Technical Research Centre flexible Perowskit-Solarzellen der nächsten Generation. Die Forschenden in Dresden wollen dazu in den nächsten Jahren eine kombinierte Permeationsbarriere mit einer transparenten Elektrodenschicht entwickeln, die sowohl die Haltbarkeit als auch die Effizienz der Solarzellen signifikant verbessert. Diese Technologie ermöglicht es, Produktionsmaterialien und -schritte zu reduzieren, was die Herstellung flexibler Solarzellen kosteneffizienter und nachhaltiger gestaltet. „Permeationsbarriereschichten und auch transparente Elektrodenschichten existieren bereits. Im Projekt wollen wir nun beide Produkte zusammenführen, um zum einen Folienmaterial und zum anderen einen Prozessschritt einzusparen. Das soll sich langfristig auf die Kosteneffizienz bei der Herstellung der Produkte auswirken und die Solarenergie so günstiger machen“, sagt Christian May.
Die Herausforderung besteht darin, die Eigenschaften beider Komponenten – Barriere und Elektrode – so zu kombinieren, dass sie sich gegenseitig nicht beeinträchtigen. Das Aufbringen und Strukturieren der Elektrode darf die Barrierewirkung nicht beeinflussen, ebenso darf umgekehrt die Funktion der Elektrode nicht eingeschränkt werden. Erste Ergebnisse wurden bereits auf der In-line Vakuumbeschichtungsanlage coFlex zur Beschichtung im Rolle-zu-Rolle-Verfahren erzielt. „Das Pearl-Projekt bietet uns die Möglichkeit, die Entwicklung von Perowskit-Solarzellen entscheidend voranzutreiben. Indem wir Barriere- und Elektrodenschichten vereinen, schaffen wir die Grundlage für eine leistungsstarke, stabile und kosteneffiziente Solartechnologie der Zukunft“, sagt May.
Im EU-Projekt Booster liegt der Schwerpunkt auf der Entwicklung von organischen Photovoltaikmodulen (OPV), die insbesondere für Gebäudeanwendungen wie gebäudeintegrierte Photovoltaik geeignet sind. Die Herstellung von OPV-Modulen zeichnet sich durch eine niedrige Energierücklaufzeit aus und nutzt Ressourcen, die reichlich vorhanden, leicht zugänglich und ungiftig sind. Darüber hinaus haben organische Photovoltaikmodule ein geringes Gewicht und sind sehr flexibel einsetzbar, was sie für den Einsatz an Gebäuden, insbesondere auch auf gewölbten Oberflächen und in vertikaler Richtung, prädestiniert.
In jüngster Zeit wurden zudem große Fortschritte in deren Leistung durch die Entwicklung neuer Materialien erzielt, die in Druckprozessen verarbeitet werden. Das Projekt zielt darauf ab, diese OPV-Technologie so weiterzuentwickeln, dass erste Demonstratoren realisiert und unter realen Bedingungen eingesetzt und getestet werden können. Die Effizienz und die Lebensdauer sollen erhöht und die Kosten gleichzeitig gesenkt werden. Konkret sollen am Ende des Projektes drei verschiedene Demonstratoren an Standorten in Deutschland und Italien integriert werden, um deren Effizienz im letzten Jahr des Projektes unter realen Bedingungen zu untersuchen.
So entwickelt das Fraunhofer FEP eine hochtransparente und langlebige Frontseitenverkapselungsfolie, die die OPV-Module vor UV-Strahlung und Feuchtigkeit schützt. Diese Schutzschicht ist entscheidend für die Lebensdauer der Module, da die Effizienz der Solarzellen maßgeblich von der Transparenz des Frontsheets abhängt. „Mit unserem Know-how in der Entwicklung spezieller Schichtsysteme z. B. als Permeationsbarriere oder zur Erzielung spezieller optischer Eigenschaften und in der Prozessentwicklung für die Beschichtung flexibler Folien bearbeiten wir verschiedene Fragestellungen im Projekt. Wir realisieren konkret eine Lösung, die die Anforderungen an die Barriereschichten für die OPV erfüllt und gleichzeitig Vorteile in den optischen Eigenschaften gegenüber des State-of-the-Art-Materials bringt“, sagt Projektleiter Patrick Schlenz.
Im Ergebnis wollen die Forschenden ein Foliensubstrat entwickeln, das nicht nur besseren Schutz vor Umweltbelastungen durch die Barriereschicht bietet, sondern auch die Transparenz steigert. Das wiederum erhöht den Wirkungsgrad der Module. Dazu sind bereits erste Ergebnisse an prozessierten OPV-Modulen im Projekt erzielt worden: Lebensdauern von mehr als 4000 Stunden unter beschleunigten Alterungsbedingungen wurden bereits nachgewiesen. Außerdem wurde eine Steigerung der Transparenzeigenschaften der Folien von 85 auf 90 Prozent erreicht.
arüber hinaus fokussieren sich die Projektpartner in Booster darauf, ein Produktionskonzept für die OPV-Module zu erarbeiten, das eine effiziente Beschichtung zu geringen Kosten bietet. Dazu wird eine Rolle-zu-Rolle-Fertigungslinie optimiert und an der Skalierung aller Materialien und Prozesse für eine solche Fertigung gearbeitet. Damit soll nach Projektende ein OPV-Modul inklusive der Prozesstechnologien zur Verfügung stehen, das von künftigen Herstellern flexibler Solarzellen oder anderer optoelektronischer Bauelemente genutzt und dahingehend transferiert werden kann.
Fh.-FEP / JOL