13.12.2024

Neue Brennstofftechnologien für Fusionskraftwerke

Forscher entwickeln integrierten Brennstoffkreislauf für Stellaratoren.

Durch fast grenzenlose Energieerzeugung könnte die Kernfusion viele Versorgungsprobleme lösen. Doch die technische Umsetzung ist komplex und für den praktischen Betrieb zukünftiger Kraftwerke fehlen noch zentrale technologische Bausteine. Um das zu ändern, entwickelt das Karlsruher Institut für Technologie jetzt gemeinsam mit Partnern aus Wissenschaft und Industrie den ersten integrierten Brennstoffkreislauf für Stellaratoren.

Abb.: Forschungsarbeiten zur sicheren Handhabung von Tritium in zukünftigen...
Abb.: Forschungsarbeiten zur sicheren Handhabung von Tritium in zukünftigen Fusionskraftwerken am KIT.
Quelle: KIT

Kraftwerke mit Fusionsreaktoren gelten als Hoffnungsträger für eine saubere Energiezukunft. „In den letzten Jahren wurden spektakuläre Fortschritte bei der Erzeugung und Handhabung von Fusionsplasmen erzielt“, sagt Thomas Giegerich vom Institut für technische Physik des KIT. „Viele Fragen des praktischen Betriebs bleiben aber ungelöst.“ Das gelte zum Beispiel für den Brennstoffkreislauf in Stellaratoren, einem Reaktortyp, bei dem das Plasma in einem verdrehten Magnetfeld so eingeschlossen wird, dass ein Dauerbetrieb möglich ist.

„Bisher gibt es kein Konzept für die Handhabung des Brennstoffs in einem zukünftigen Fusionskraftwerk“, betont Giegerich. „Es existiert auch keine Anlage, mit der ein solcher Brennstoffkreislauf validiert werden könnte.“ Beides soll in dem vom KIT koordinierten Projekt „Synergie-Verbund Brennstoffkreislauf und Tritium Technologien“ SyrVBreTT in einem Konsortium direkt mit der Industrie realisiert werden.

Fusionskraftwerke benötigen als Brennstoff ein Gemisch aus den Wasserstoffisotopen Deuterium und Tritium, das im Reaktor zu Helium umgesetzt wird. Damit der Heliumanteil im Fusionsplasma nicht zu stark ansteigt, muss das Reaktionsgemisch im Stellarator kontinuierlich abgepumpt, gereinigt und dann zusammen mit neuem Brennstoff injiziert werden. Die Gesamtheit der hierfür erforderlichen Systeme wird als innerer Brennstoffkreislauf bezeichnet.

Weil das für die Fusionsreaktion benötigte Tritium aufgrund seiner geringen Halbwertszeit von wenigen Jahren nicht direkt in der Natur vorkommt, muss es in Brutblankets technisch erzeugt werden. Alle dafür erforderlichen Systeme werden als äußerer Brennstoffkreislauf bezeichnet. „In unserem Projekt entwickeln wir die für beide Kreisläufe notwendigen technischen Komponenten wie Pumpen, Speicherbetten und Pellet-Injektionssysteme“, so Giegerich.

Um Schnittstellenprobleme bei den einzelnen Komponenten zu vermeiden, werden innerer und äußerer Brennstoffkreislauf dabei gemeinsam und aufeinander abgestimmt entwickelt. Ergänzend soll durch gezielte Simulationen und experimentelle Untersuchungen sichergestellt werden, dass die Technologien realitätsnah validiert werden können. „Bei uns am KIT entsteht dafür eine Fuel Cycle Test Facility, in der alle relevanten Systeme unter realen Bedingungen geprüft werden können“, sagt Giegerich. Das sei ein entscheidender Schritt, um den Übergang vom Experiment zur praktischen Anwendung zu ermöglichen.

KIT / RK

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen