09.06.2022 • KernphysikAtome und Moleküle

Wie magnetisch ist Helium-3?

Erste direkte Kalibrierung für 3He-Kernspin-Resonanz-Sonden.

In einer gemeinsamen experimentell-theoretischen Studie haben Wissen­schaftler des MPI für Kernphysik zusammen mit Mitarbeitern des RIKEN in Japan die magnetischen Eigen­schaften des Isotops Helium-3 untersucht. Zum ersten Mal gelang es, die elektro­nischen und nuklearen g-Faktoren des 3He+-Ions direkt mit einer relativen Genauigkeit von 10-10 zu messen. Mit einer um zwei Größen­ordnungen verbesserten Genauigkeit wurde die magnetische Wechsel­wirkung zwischen Elektron und Kern bestimmt. Eine genaue Berechnung der elektro­nischen Abschirmung ergab den g-Faktor des nackten 3He-Kerns. Die Ergebnisse stellen die erste direkte Kalibrierung für 3He-Kernspin­resonanz­sonden dar.

Abb.: Schema­tische Dar­stel­lung der ex­ternen und in­ternen...
Abb.: Schema­tische Dar­stel­lung der ex­ternen und in­ternen magne­tischen Wechsel­wir­kungen im 3He+-Ion. Hinter­grund: Mikro­wellen­strah­lung. (Bild: MPIK)

Die genaue Kenntnis der magnetischen Eigen­schaften von Materie auf atomarer und nuklearer Ebene ist sowohl für die Grund­lagen­physik als auch für Anwendungen wie Kernspin­resonanz­sonden von großer Bedeutung. Geladene Teilchen mit Spin wirken wie eine winzige Magnetnadel. Die Propor­tio­nalität zwischen magnetischem Moment und Spin ist durch den g-Faktor gegeben, der eine Eigenschaft des jeweiligen Teilchens und seiner Umgebung ist. Ein atomarer oder nuklearer Drehimpuls ist quantisiert. Insbesondere kann der Spin des Elektrons – wie auch der des Kerns – in 3He entweder parallel oder anti­parallel zu einem äußeren Magnetfeld ausgerichtet sein.

Die magnetische Wechsel­wirkung von 3He ist dreifach: In einem äußeren Magnetfeld kann das magnetische Moment des Elektrons oder des Kerns parallel oder anti­parallel zu den Feldlinien ausgerichtet sein. Hinzu kommt die magnetische Wechsel­wirkung zwischen Elektron und Kern. Das führt zu insgesamt vier Energie­niveaus, die von der Orientierung des Elektronen- und Kernspins abhängen. Mikro­wellen­strahlung kann Übergänge zwischen diesen Niveaus – entsprechend einem Spin-Flip – resonant induzieren. Das ermöglicht eine hoch­präzise Messung der Resonanz­frequenzen, aus der sich die g-Faktoren sowie die Hyper­fein­auf­spaltung für ein gegebenes Magnetfeld direkt ableiten lassen.

Für das Experiment nutzten die Forscher eine Einzel-Ionen-Penningfalle, um über die genaue Bestimmung der Zyklotron­frequenz des gefangenen Ions die Übergangs­frequenzen zwischen den Hyperfein­zuständen und gleichzeitig das Magnetfeld zu messen. Die Falle befindet sich in einem supra­leitenden 5,7-Tesla-Magneten und besteht aus zwei Teilen: einer Präzisions­falle für die Messung der Ionen­frequenzen und der Wechsel­wirkung mit der Mikrowellen­strahlung und einer Analyse­falle zur Bestimmung des Hyperfein­zustands. Für jeden Übergang erreicht die Spin-Flip-Rate bei Resonanz ein Maximum. Die g-Faktoren und die feldfreie Hyperfein­aufspaltung werden dann aus der Analyse der Resonanz­kurven extrahiert. Der neue Versuchs­aufbau verbessert die Genauigkeit der g-Faktoren um den Faktor 10.

„Um aus dem gemessenen Kern-g-Faktor in 3He2+ den g-Faktor des nackten Kerns in 3He+ zu extrahieren, muss man die diamagnetische Abschirmung des Elektrons berück­sichtigen, also seine magnetische Reaktion auf das äußere Feld“, erklärt Bastian Sikora vom MPIK. Die Theoretiker bestimmten den Abschirmungs­faktor mit hoher Präzision durch hochgenaue quanten­elektro­dynamische Berechnungen. Im gleichen theoretischen Rahmen berechneten sie auch den g-Faktor für gebundene Elektronen für 3He+ und die Nullfeld-Hyperfein­aufspaltung.

Alle theoretischen und experi­mentellen Ergebnisse stimmen im Rahmen der jeweiligen Genauigkeit überein, die für die experi­mentelle Nullfeld-Hyperfein­aufspaltung um zwei Größen­ordnungen verbessert werden konnte. Aus letzter ließ sich ein Kern­parameter, der Zemach-Radius, extrahieren, der die Kern­ladungs- und Magneti­sie­rungs­verteilung charak­te­risiert.

Für die Zukunft planen die Forscher, die Messungen zu verbessern, indem sie die magnetische Inhomo­genität der Präzisions­falle verringern und genauere Magnetfeld­messungen durchführen. Die neue Messmethode ist auch zur Bestimmung des magnetischen Kernmoments anderer wasserstoff­ähnlicher Ionen geeignet. Ein nächster Schritt ist die direkte Messung des magnetischen Moments des nackten 3He-Kerns in einer Penning­falle mit einer relativen Genauigkeit in der Größen­ordnung von 1 ppb oder besser mittels sympathischer Laserkühlung.

MPIK / RK

Weitere Infos

 

 

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen