Wendige Elektronen

In topologischen Isolatoren können Elektronen ihre Bewegungsrichtung abrupt umkehren.

Einer internationalen Forscher­gruppe ist es gelungen, die Bewegungs­richtung von Elektronen ultra­schnell umzu­drehen, ohne diese vorher abzu­bremsen. Dafür machten sich die Forscher die Eigen­schaften einer neuen Klasse von Materialien – topo­logischer Isolatoren – zu Nutze. Auf deren Ober­fläche verhalten sich Elektronen wie masse­lose Teilchen, die sich sehr schnell bewegen.

Abb.: Wenn Elektronen in topo­lo­gischen Iso­la­toren ihre...
Abb.: Wenn Elektronen in topo­lo­gischen Iso­la­toren ihre Bewe­gungs­rich­tung ab­rupt um­drehen, kommt es zu neu­artigen Licht­emis­sionen. (Bild: B. Baxley, parttowhole.com)

Um die Bewegungsrichtung der Elektronen möglichst schnell zu schalten, verwendeten die Forscher die schwingende Träger­welle von Licht wie einen starken Schubs. Wenn Elektronen abrupt wenden, entsteht ein ultra­kurzer Licht­blitz, der einen großen spektralen Bereich abdeckt und mit optischen Detektoren vermessen werden kann. Welche Wellen­längen genau emittiert werden, folgt dabei bestimmten Regeln: Normaler­weise entsteht nur Licht, dessen Schwingungs­frequenz ein ganz­zahliges Viel­faches der Frequenz des ein­fallenden Lichts beträgt. „Durch geschicktes Verändern des beschleu­ni­genden Licht­felds gelang es uns jedoch, diese Regeln zu brechen und die Bewegung der Elektronen so zu kontrol­lieren, dass Licht jeder erdenk­lichen Farbe erzeugt werden kann“, erklärt Christoph Schmid von der Uni Regensburg.

Bei der Analyse der emit­tierten Strahlung stießen die Forscher zudem auf weitere ungewöhn­liche Quanten­eigen­schaften der Elektronen. So stellte sich heraus, dass sich die Elektronen an der Oberfläche des topologischen Isolators nicht auf geraden Bahnen, sondern in Schlangen­linien durch den Festkörper bewegen. „Was die Quanten­mechanik an Erscheinungen so produziert, wenn man nur ein bisschen genauer hinschaut, lässt auch den hart­ge­sottenen Theoretiker immer wieder erstaunen“, erläutert Jan Wilhelm von der Uni Regensburg, der dieses Verhalten gemeinsam mit seinen Kollegen mittels eines eigens dafür entwickelten Simulations­verfahrens erklärt hat.

„Diese Ergebnisse vermitteln nicht nur einen faszi­nie­renden Einblick in die mikro­skopische Quanten­natur von Elektronen, sondern geben auch Anlass zur Hoffnung, dass topo­logische Isolatoren Anwendung in der Informations­ver­arbeitung der Zukunft finden könnten“, resümiert Rupert Huber von der Uni Regensburg.

U. Regensburg / RK

Weitere Infos

 

 

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen