Strahlung lässt Moleküle tanzen
Neue Möglichkeiten zur Kartierung der Ladungsflüsse innerhalb der Moleküllandschaft.
Ein internationales Team unter Leitung der Forschungsgruppe von Markus Gühr an der Uni Potsdam hat Ladungsbewegungen in lichtangeregten Molekülen von Thiouracil, einer modifizierten Nukleobase, beobachtet. Diese Klasse von Molekülen hat eine Vielzahl von medizinischen Anwendungen, einschließlich möglicher neuer Krebstherapien. Die Ergebnisse der am Deutschen Elektronen-Synchrotron DESY durchgeführten Laserexperimente eröffnen neue Möglichkeiten, die Ladungsflüsse innerhalb der Moleküllandschaft zu kartieren.
Nahezu alle Energiequellen sind auf die Sonne als primäre Quelle angewiesen. Die Natur ist reich an effizienten und ökonomischen molekularen Maschinen, die Lichtenergie in veränderte chemische Bindungen, elektrischen Strom oder Wärme umwandeln können. Auf mikroskopischer Ebene erfolgt die Umwandlung des absorbierten Lichts in andere Energieformen durch einen elektrischen Ladungsfluss in den Molekülen.
Das jetzt untersuchte Molekül Thiouracil gehört zur Klasse der Thiobasen. Diese Moleküle werden aus den natürlich vorkommenden Nukleobasen – welche genetische Informationen zu DNA und RNA kodieren – gewonnen, indem ein oder mehrere Sauerstoffatome durch Schwefel ersetzt werden. Thiobasen haben eine Vielzahl von Anwendungsmöglichkeiten, wie etwa Medikationen, die das Immunsystem nach Organtransplantationen herunterfahren, und möglicherweise auch die photoinduzierte Krebstherapie zur Zerstörung von Tumorzellen. Reguläre Nukleobasen leiten die durch UV-Anregung erhaltene Energie schnell ab und vermeiden so potenzielle Mutationen. Werden Thiobasen mit UV-Licht bestrahlt, gehen sie stattdessen in angeregte Zustände über, was zur Bildung einer reaktiven Form von Sauerstoff in der Nähe des Moleküls führt.
Das Team nutzte die Empfindlichkeit der Röntgen-Photoelektronen-Spektroskopie für bestimmte Atome innerhalb eines Moleküls, um lichtangeregtes Thiouracil auf einer Femtosekunden-Zeitskala zu untersuchen. Ein erster UV-Puls regte Thiouracil an und löste eine ultraschnelle Ladungsbewegung innerhalb des Moleküls aus. Ein zweiter verzögerter Röntgenpuls ionisierte bestimmte Elektronen, die sich stark am Schwefelatom des Moleküls konzentrierten. Die Forscher beobachteten zeitabhängige Veränderungen in der Energie dieser Photoelektronen, die direkt den Ladungsfluss vom und zum Schwefelatom widerspiegeln.
„Wir haben modernste quantenchemische Berechnungen auf viele verschiedene molekulare Strukturen angewandt“, sagt David Picconi von der Uni Potsdam, „und dabei festgestellt, dass die UV-Anregung die Elektronendichte in der Nähe des Schwefelatoms verringert und durchweg zu einer niedrigeren Energie der durch die Röntgenstrahlen ausgestoßenen Photoelektronen führt. Das ist verständlich, denn bei geringerer Elektronendichte ist die Coulomb-Anziehung des Schwefelkerns stärker, ein höherer Anteil der Röntgenenergie wird für die Ionisation benötigt, und dem Photoelektron bleibt weniger Energie.“ Dieser Zusammenhang zwischen lokaler Ladung und Photoelektronenspektroskopie wurde bereits vom Nobelpreisträger Kai Siegbahn für Moleküle ohne Lichtanregung formuliert. Das Team wendet jetzt genau dieselben Konzepte auf den lichtangeregten Zustand von Molekülen an.
Die experimentelle Studie erhellt den mikroskopischen Mechanismus, warum Thiobasen in potenziell schädliche Zustände übergehen. Dieser Prozess erwies sich als komplex. „Unser erster Blick auf das Photoelektronensignal während des Experiments offenbarte keine besonders detaillierten Merkmale“, so Dennis Mayer von der Uni Potsdam. „Freie-Elektronen-Laser weisen viele Fluktuationen auf, aber glücklicherweise gibt es auch Diagnosemöglichkeiten, um diese zu messen. Die spätere Korrektur ergab schöne zeitabhängige Oszillationen in der kinetischen Energie der Photoelektronen.“ Die oszillierende Photoelektronenenergie und damit die oszillierende Ladung am Schwefelatom deutet darauf hin, dass das Molekül zwischen verschiedenen elektronischen Konfigurationen hin und her springt, bevor es sich schließlich im angeregten Zustand einpendelt.
Das Team führte die Studie an der Free-Electron Laser Facility FLASH 2 des DESY in Hamburg durch, in einer nach Kai Siegbahn benannten Experimentierhalle. Dort hatte die Gruppe die einmalige Chance, gemeinsam mit der FLASH-Facility ein neues Instrument für diese Art von Forschung zu bauen. Jetzt freut sich das Team auf weitere Experimente. „Bisher haben wir die Ladungsdynamik nur aus dem Blickwinkel eines bestimmten Atoms im Molekül betrachtet“, so Gühr. „Wenn wir das auf verschiedene Atome ausdehnen, können wir eine vollständige dynamische Karte des Ladungsflusses innerhalb der Moleküllandschaft erstellen.“
U. Potsdam / RK
Weitere Infos
- Originalveröffentlichung
D. Mayer et al., Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy, Nat. Commun. 13, 198 (2022); DOI: 10.1038/s41467-021-27908-y - Experimentelle Quantenphysik (M. Gühr), Institut für Physik und Astronomie, Universität Potsdam