Stärkeres Triebwerk für Ariane 6
Erster Brenntest des neuen Triebwerksmodells ETID erfolgreich.
Das neue Triebwerksmodell ETID – Expander-Cycle Technology Integrated Demonstrator –, das für Schwerlastraketen der nächsten Generation wie Ariane-6 eingesetzt werden soll, hat seinen ersten Brenntest erfolgreich bestanden: Dieses Ergebnis präsentierten nun Experten der Europäischen Weltraumorganisation ESA, des Raumfahrtunternehmens ArianeGroup GmbH und des Deutschen Zentrums für Luft- und Raumfahrt DLR. Der ETID-Antrieb war am 14. Juni am Prüfstand P3.2 am DLR-Standort Lampoldshausen getestet worden. Bereits zwei Tage zuvor konnte das Triebwerk erstmalig erfolgreich gezündet werden.
„Seit rund vier Jahren arbeiten wir mit unseren Partnern an einem neuen Antrieb für die Trägerraketen von morgen“, erklärt Lysan Pfützenreuter, Projektleiterin beim DLR Raumfahrtmanagement. „Über die Ergebnisse sind wir sehr froh, denn der erfolgreiche Test zeigt, dass wir mit dem Einsatz moderner Fertigungsverfahren auf dem richtigen Weg sind.“ In dem Test hatten die Prüfingenieure erste Leistungsdaten des Triebwerksmodells ermittelt und diese mit den erwarteten Ergebnissen aus den Modellberechnungen verglichen. Die ETID-Technologien sollen zukünftig für Verbesserungen des Vinci-Triebwerks und der Ariane-6-Oberstufe eingesetzt werden. Durch neue Herstellungsverfahren und optimierte Bauteile werden gleichzeitig die Leistungsdichte des Antriebs erhöht und die Produktionskosten gesenkt.
„Durch das eingesparte Gewicht des kompletten Antriebs kann die Rakete mehr Nutzlast transportieren, und durch den Einsatz kostengünstiger Herstellungsverfahren und Materialien lassen sich die Startkosten reduzieren", so Pfützenreuter. „Diese Vorteile können entscheidend sein im harten Wettbewerb auf dem internationalen Trägermarkt.“ Innerhalb der nächsten sechs Monate sollen zwanzig Tests mit einer Brenndauer von jeweils 120 Sekunden durchgeführt werden. Dabei erproben die Ingenieure drei verschiedene Konfigurationen. Diese unterscheiden sich beispielsweise in den Fertigungsverfahren von Schubkammer, Zündsystemen, Düsen und Ventilen.
Solche Komponenten, wie etwa der Einspritzkopf, bestehen bei einem konventionellen Raketenmotor aus mehreren hundert Einzelteilen, die produziert und verschweißt werden müssen. Ziel ist es nun, die Anzahl der Bauteile zu reduzieren, so dass mehrere Prozessschritte und somit Kosten und Zeit eingespart werden können. So enthält beispielsweise die erste Konfiguration des Einspritzkopfes eine Grundplatte, die aus einem Block gefräst wurde. Sie beinhaltet zudem bereits Teile der Einspritzelemente. Dies verringert die Anzahl der Bauteile bereits um etwa achtzig Prozent. In einem zweiten Schritt wird die Grundplatte im 3-D-Druckverfahren hergestellt, wodurch noch einmal Fertigungsdauer, Anzahl der Fertigungsschritte und Gewicht eingespart werden. Ein dritter Einspritzkopf wird dann vollständig gedruckt, so dass das Bauteil aus einem Guss besteht.
Getestet werden die Triebwerksmodelle am Prüfstand P3.2 vom DLR-Institut für Raumfahrtantriebe in Lampoldshausen. Der Prüfstand ist so konzipiert, dass Brennkammertypen für heutige und zukünftige Raumfahrtantriebe wie Raketenoberstufen unter realistischen Vakuum-Bedingungen getestet und optimiert werden können. Die Testanlage misst die Daten, steuert, regelt und überwacht das Triebwerksmodell im laufenden Betrieb. „Mit dem Prüfstand P3.2 können neue Technologien wie ETID unter repräsentativen Bedingungen getestet werden“, erläutert Christopher Gusinde, Prüfstandsleiter beim DLR-Institut für Raumfahrtantriebe. „Die Forschungs- und Testaktivitäten des DLR in Lampoldshausen tragen so entscheidend zur Zukunft des europäischen Raumtransports bei.“ Weiterhin erlaubt der Prüfstand das Verbrennen von unterschiedlichen Treibstoffkombinationen, wie Flüssigwasserstoff mit Flüssigsauerstoff oder Flüssigmethan mit Flüssigsauerstoff. „Der Prüfstand P3.2 ist für die Entwicklung von zukünftigen Antriebstechnologien ausgelegt und flexibel gestaltet, sodass wir auf neue Anforderungen rasch reagieren können“, sagt Gusinde.
DLR / JOL