29.08.2023 • Magnetismus

Spintronik: Röntgenmikroskopie an BESSY II kann Domänenwände unterscheiden

Wichtiger Schritt Richtung Anwendung ferrimagnetischer Legierungen für spintronische Bauelemente gelungen.

Magnetische Skyrmionen sind winzige Wirbel aus magnetischen Spin-Texturen. Im Prinzip könnten Materialien mit Skyrmionen als spintronische Bauelemente verwendet werden, zum Beispiel als sehr schnelle und energie­effiziente Datenspeicher. Doch im Moment ist es noch schwierig, Skyrmionen bei Raum­temperatur zu kontrollieren und zu manipulieren. Eine neue Studie an BESSY II analysiert die Bildung von Skyrmionen in einem besonders interes­santen Material in Echtzeit und mit hoher räumlicher Auflösung. Es handelt sich um ferri­magnetische Dünnschichten aus Dysprosium und Kobalt. Die Ergebnisse zeigen, dass es möglich ist, den Skyrmionen­typ klar zu bestimmen.

Abb.: Simulation der Kontrast­bilder mit unter­schied­lich pola­ri­sierter...
Abb.: Simulation der Kontrast­bilder mit unter­schied­lich pola­ri­sierter Rönt­gen­strah­lung für Skyr­mi­onen vom Bloch- (oben) und Néel-Typ (Mitte). Die untere Zeile zeigt die Ergeb­nisse der Raster-Trans­mis­sions-Röntgen­mikro­skopie. Sie ent­sprechen dem Néel-Typ. (Bild: F. Radu, HZB; CC-BY-SA)

Isolierte magnetische Skyrmionen sind topologisch geschützte Spin-Texturen, die wegen ihrer möglichen Anwendungen in der Informations­techno­logie gerade intensiv untersucht werden. Besonders interessant sind Skyrmionen, die in ferri­magnetischen Seltenerd-Übergangs­metall-Materialien auftreten. Sie weisen abstimmbare ferro­magnetische Eigen­schaften mit anti­ferro­magnetisch gekoppelten Unter­gittern auf. Durch die Wahl der Elemente aus der Gruppe der Seltenen Erden und der Übergangs­metalle bieten sie eine Spielwiese für die Kontrolle der Magneti­sierung und der senkrechten magnetischen Anisotropie, beides Schlüssel­parameter für die Stabili­sierung topo­lo­gischer ferri­magnetischer Texturen.

Eine Klasse von ferri­magnetischen Legierungen besitzt eine stärkere senkrechte magnetische Anisotropie, dazu gehört auch eine Verbindung aus Dysprosium und Kobalt. Diese Materialien könnten Informationen deutlich stabiler abspeichern, allerdings sind ihre magnetischen Eigen­schaften und Strukturen bisher kaum untersucht worden. Ein Team unter der Leitung von Florin Radu hat jetzt DyCo3-Proben mit röntgen­mikro­skopischen Methoden an BESSY II analysiert und die Spin­strukturen bestimmt.

Dazu nutzten die Forscher die Raster-Trans­missions-Röntgen­mikro­skopie mit zirkular oder linear polari­siertem Röntgenlicht, um über röntgen­magnetische Effekte den Kontrast zwischen den Elementen zu steigern. „So konnten wir isolierte ferri­magnetische Skyrmionen in hoher Dichte direkt beobachten und ihren Domänen­wand­typ genau bestimmen", berichtet Radu.

Die Ergebnisse zeigen, dass die ferri­magnetischen Skyrmionen vom Néel-Typ sind und sich deutlich von den anderen Domänen­wänden, den Bloch-Wänden, unterscheiden lassen. Damit kann erstmals der Typ der Domänenwände durch Röntgen­unter­suchungen zuverlässig bestimmt werden. Das ist ein wichtiger Schritt in Richtung der Anwendung dieser interes­santen Material­klasse für echte spin­tronische Bau­elemente.

Weitere Infos

Weitere Beiträge

 

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen