Selbstorganisation lebender Materie
Neues Modell liefert Erkenntnisse für technische Anwendungen bei der Bildung von Strukturen.
Fadenförmige Cyanobakterien sammeln sich in Bereichen mit für sie günstigen Lichtverhältnissen an und nutzen die dortige Lichtenergie für Photosynthese. Typischerweise bilden diese Mikroorganismen lange Filamente aus vielen Zellen. Allerdings können sich die fadenförmigen Strukturen lediglich vorwärts oder rückwärts bewegen – beim Verlassen des beleuchteten Bereiches kehren sie ihre Bewegung um, und bleiben so im Hellen. Forschende vom Max-Planck-Institut für Dynamik und Selbstorganisation haben die sich daraus ergebenden Organisationsstrukturen untersucht. Es zeigte sich, dass erst die gegenseitige Wechselwirkung mehrerer Filamente dazu führt, dass sich die Cyanobakterien am Innenrand der beleuchteten Fläche ausrichten und dadurch stabile Strukturen bilden können.
Die Forschenden haben dafür mehrere Kulturen von Cyanobakterien in Petrischalen präpariert und beleuchtet. Mit Hilfe von Filtern erzeugten sie verschiedene Lichtmuster und beobachteten anschließend die Selbstorganisation der Bakterien. Bei einem kreisförmigen Lichtmuster sammelten sich die Bakterien vorwiegend am Rand der beleuchteten Fläche an. Bei dreieckigen, trapezförmigen oder anderen beleuchteten Flächen zeigten sich ebenfalls charakteristische Muster aus Filamenten in der Nähe zur Randzone des Lichts. „Das Bemerkenswerte ist, dass die Bakterien sich auch entlang komplexer Strukturen und Kurven arrangieren, obwohl sie sich nur vor- oder zurück bewegen können“, sagt Stefan Karpitschka. „Dies ist ein typisches Beispiel für Emergenz – aus dem individuellen Verhalten eines einzelnen Filaments ergibt sich auf einer höheren Ebene selbstständig eine charakteristische Gesamtstruktur“, fährt er fort.
Die Erkenntnisse aus den Experimenten und dem daraus resultierenden Modell lassen sich auch auf lebende Materie mit vergleichbarer Morphologie anwenden. „Das Modell enthält keine spezifischen Details zur Biologie der Bakterien“, sagt Leila Abbaspour. „Dieser kollektive Effekt kann also auch in ähnlichen Systemen beobachtet werden und aktive Filamente in die Lage versetzen, sich trotz eindimensionaler Motilität entsprechend den sensorischen Hinweisen aus ihrer Umgebung zu strukturieren“, sagt ihr Kollege Maximilian Kurjahn.
Die Ergebnisse dieser Studie liefern somit wichtige Erkenntnisse, die beispielsweise beim Design von intelligenten Textilien oder Materialien zum Einsatz kommen können. Diese neuartigen Strukturen und Gewebe basieren ebenfalls auf der Anordnung von einzelnen Fasern und aktiven Filamenten. Durch derartige Mechanismen der Selbstorganisation lassen sich somit möglicherweise neue innovative Materialien entwickeln.
MPI-DS / JOL