02.04.2025

Quantenelektrodynamik unter hohen Feldern getestet

Messung des g-Faktors von hochionisierten Zinn-Ionen erlaubt strengen Test der Quantenfeldtheorie.

Hochgeladene schwere Ionen bilden ein sehr geeignetes Experimentierfeld für die Untersuchung der Quantenelektrodynamik (QED), der am besten geprüften Theorie der Physik, welche alle elektrischen und magnetischen Wechselwirkungen von Licht und Materie beschreibt. Eine zentrale Eigenschaft des Elektrons im Rahmen der QED ist der g-Faktor, der genau charakterisiert, wie sich das Teilchen in einem Magnetfeld verhält. Kürzlich hat die Alphatrap-Gruppe um Sven Sturm in der Abteilung von Klaus Blaum am Max-Planck-Institut für Kernphysik (MPIK) in Heidelberg den g-Faktor von wasserstoffähnlichen Zinn-Ionen mit einer Genauigkeit von 0,5 Teilen pro Milliarde bestimmt. Das ist so, als würde man die Strecke Köln-Frankfurt auf die Dicke eines menschlichen Haares genau messen. Dies stellt einen strengen Test der QED für das einfachste atomare System dar, ähnlich wie gewöhnlicher Wasserstoff, aber mit einem viel höheren elektrischen Feld, das das Elektron aufgrund der Ladung von fünfzig Protonen im Zinnkern erfährt.


Abb.: Schematische Darstellung der QED-Wechselwirkungen in borähnlichen...
Abb.: Schematische Darstellung der QED-Wechselwirkungen in borähnlichen Zinn-Ionen.
Quelle: MPIK

Weitere Nachrichten zum Thema

Photo
Photo
Photo

In einer neuen Studie haben die Forscher hochgeladene borähnliche Zinn-Ionen mit nur fünf verbleibenden Elektronen untersucht. Ziel ist die Untersuchung der interelektronischen Effekte in der borähnlichen Konfiguration. Bislang wurde der einzige borähnliche g-Faktor mit hoher Präzision für Argon-Ionen mit einer Protonenzahl Z von 18 gemessen. Der Kern ist jedoch keine Punktladung wie das Elektron und seine Ladungsverteilung führt zu Korrekturen durch die endliche Kerngröße – eine weitere Herausforderung für Präzisionsexperimente.

Für die Messung wurde ein 118Sn45+-Ion in der Alphatrap-Ionenfalle gespeichert. „Dank der langen Lagerungszeit von etwa vierzig Tagen können wir den g-Faktor mit bisher unerreichter Präzision messen“, sagt Postdoc Jonathan Morgner „Durch die Kombination des neuen Ergebnisses mit bereits vorhandenen Daten für wasserstoffähnliches Zinn können wir die Korrekturen der endlichen Kerngröße eliminieren.“ Das neue Ergebnis für den g-Faktor von ¹¹⁸Sn⁴⁵⁺ ist 0,644 703 826 5(4), wobei die Messunsicherheit in Klammern angegeben ist.

Zum Vergleich mit dem experimentellen Wert berechneten Physiker der Theorieabteilung von Christoph Keitel am MPIK den g-Faktor von 118Sn45+. „Unser ausgereifter Ab-Initio-QED-Ansatz berücksichtigt auch die Effekte der Elektronenkorrelation sowie die endliche Kerngröße“, erklärt Matteo Moretti. Die Korrekturen der endlichen Kerngröße heben sich in der Nähe von Z = 54 auf, so dass diese Unsicherheit bei Z = 50 gering ist. Die theoretische Vorhersage für den g-Faktor von 0,644 702 9(8) stimmt mit dem experimentellen Wert überein.

Das im Vergleich zur theoretischen Vorhersage um einen Faktor 2000 genauere Experiment ist ein Maßstab für künftige Fortschritte in der atomaren QED. Als entscheidender Datenpunkt für borähnliche Systeme bei mittleren Kernmassen demonstriert es das Potenzial einer kompetitiven Bestimmung der Feinstrukturkonstante α, einer fundamentalen Größe, die die Stärke der elektromagnetischen Kräfte im gesamten Universum bestimmt. Optimal für künftige Experimente ist borähnliches Xenon (Z = 54), für das die Korrekturen der endlichen Kerngröße minimal sein dürften. Auf theoretischer Seite besteht die künftige Herausforderung darin, die Berechnungen zu verbessern, um die experimentelle Präzision zu erreichen.

MPIK / DE


Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Content-Ad

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Das Park FX200 ist ideal für Forschung und Industrie zur automatisierten Messung von bis zu 200mm großen Proben und bietet bedeutende Fortschritte in der AFM-Technologie

Meist gelesen

Photo
08.11.2024 • NachrichtForschung

Musik als Zeitreihe

Analyse von musikalischen Tonhöhensequenzen ergibt interessante Unterschiede zwischen verschiedenen Komponisten und Musikstilen.

Themen