Maschinelles Katalyse-Tetris
Lernalgorithmus sagt Bindung komplexer Moleküle an die Oberfläche voraus.
In der computergestützten Katalyseforschung müssen Wissenschaftler häufig eine ähnliche Aufgabe meistern, wie bei dem bekannten Computerspiel Tetris. Eine der Kerngrößen, die sie regelmäßig mit hochentwickelter quantenmechanischer Simulationssoftware berechnen, ist, wie stark ein Molekül an die Oberfläche eines potenziellen Katalysatormaterials bindet. Die Relevanz dieser Information wurde bereits vor etwa hundert Jahren von Nobelpreisträger Paul Sabatier entdeckt: Ist die Bindung zu schwach, wird das Molekül nicht genügend aktiviert, um effizient in der katalytischen Reaktion umgesetzt werden zu können. Ist die Bindung zu stark, beteiligt es sich nicht mehr an der Reaktion, sondern blockiert einfach nur die Katalysatoroberfläche.
Die quantenmechanischen Berechnungen können diese wichtige Information sehr genau liefern. Deshalb werden sie zunehmend für eine erste Einschätzung der Eignung eines neuen Katalysatormaterials eingesetzt, bevor das Material überhaupt arbeitsintensiv real im Labor synthetisiert wird. Leider benötigen die Rechnungen Supercomputer. Und genau wie in Tetris gibt es verschiedene Positionen auf der Oberfläche, an die das Molekül anknüpfen könnte. Indem sie alle Positionen jeweils mit einer eigenen Rechnung ausprobieren, bestimmen die Wissenschafter, wo das Molekül am besten hinpasst.
Größere, komplizierte Moleküle können sich zudem in verschiedener Weise und Orientierung an die Positionen binden – erneut gerade so, wie ein kompliziert geformtes Teil in Tetris. Bedenkt man, dass gerade in wichtigen katalytischen Reaktionen wie der Fischer-Tropsch-Reaktion zur Erzeugung synthetischer Kraftstoffe Dutzende Moleküle involviert sind, dauert es einfach zu lange, um die enorme Anzahl an insgesamt nötigen Rechnungen durchzuführen.
Erfahrene Tetrisspieler entwickeln ein Gefühl dafür, wo sie die Teile am besten hinschieben. „Maschinelle Lernalgorithmen funktionieren genauso“, erklärt Wenbin Xu vom Fritz-Haber-Institut. Nachdem sie mit den Ergebnissen vorheriger Rechnungen für ähnliche Moleküle und Katalysatoroberflächen trainiert wurden, können diese Algorithmen verlässliche Vorhersagen über die Bindung machen, ohne den Bedarf an weiterer Supercomputerzeit und viel schneller. Bisher konnten die Algorithmen allerdings nicht richtig mit komplizierteren Molekülen umgehen. Sie konnten nur die Bindung kleiner Moleküle vorhersagen, die in nur einer offensichtlichen Orientierung an die Oberfläche binden können – so wie ein einfaches quadratisches Tetris-Teil.
„Die fehlende Information für die Algorithmen war die Verknüpfung innerhalb des Moleküls: Welches Atom bindet an welches“, erläutert Mie Andersen von der Universität Aarhus. Unter Ausnutzung mathematischer Graphentheorie hat das Forschungsteam nun einen Weg gefunden, diese Information geeignet einfließen zu lassen. Ihr neuer maschineller Lernalgorithmus liefert bereits genaue Bindungsinformation für größere Moleküle, die zentral in Fischer-Tropsch und anderen Treibstoff erzeugenden Reaktionen beteiligt sind.
FHI / RK
Weitere Infos
- Originalveröffentlichung
W. Xu, K. Reuter & M. Andersen: Predicting binding motifs of complex adsorbates using machine learning with a physics-inspired graph representation, Nat. Comp. 2, 443 (2022); DOI: 10.1038/s43588-022-00280-7 - Theorie (K. Reuter), Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
- Center for Interstellar Catalysis, Dept. of Physics and Astronomy, Aarhus University, Dänemark