Grenzflächeneigenschaften von Seifen untersucht
Mikroroboter simulieren Tensidmoleküle – und zeigen ungewöhnliche Effekte mit breitem Anwendungspotenzial.
Um Schmutz von der Haut zu entfernen, braucht man Seife. Die darin vorhandenen Tensidmoleküle drängen sich an die Grenzfläche zwischen Schmutz und Haut und helfen, den Schmutz im Wasser zu lösen. Dieses Phänomen konnten Forscher der Unis Düsseldorf und Erlangen-Nürnberg jetzt mit rotierenden Mikrorobotern beobachten: Links- und rechtsdrehende Mikroroboter trennen sich voneinander und bilden zusammengehörige Gruppen, die sich durch eine klare Grenze voneinander abtrennen – wie bei Wasser und Öl. Verbindet man die Mikroroboter zu Ketten, lassen sich unterschiedliche Effekte beobachten: Die Ketten können die Gruppen vermischen und wie Tenside neue Strukturen bilden – so wie bei Seife und Seifenblasen.
Die Mikroroboter werden im 3D-Drucker hergestellt, sind einen Zentimeter groß und wiegen ein Gramm. Die Neigung ihrer sieben Beine bestimmt die Rotationsrichtung. Ein Vibrationsteller regt die Mikroroboter zur Rotation an, dabei schließen sie sich in gleichdrehende Gruppen zusammen. Zwischen den Gruppen herrscht dann eine Spannung, die eine Vermischung verhindert. Um herauszufinden, wie man bei dieser Simulation die Grenzlinie zwischen rechts- und linksdrehenden Mikrorobotern auflösen und die Gruppen wieder vermischen kann, haben die Forscher mit unterschiedlich zusammengesetzten Ketten von Mikrorobotern experimentiert.
Besteht die Kette aus zwei Strängen unterschiedlich rotierender Roboter, bewegt sich die Kette aktiv entlang der Grenzlinie zwischen den beiden Gruppen. „Sie surfen also auf der Grenzfläche rasant hin und her und können so ihren Zweck der Grenzflächenspannungsreduktion viel wirksamer erfüllen”, sagt Christian Scholz von der Uni Düsseldorf.
Indem die Roboter die Spannung an der Grenzlinie reduzieren, vereinfachen sie die Vermischung der Gruppen. Besteht die Kette nur aus einem Strang mit unterschiedlich rotierenden Robotern, führt die Rotation der Ketten dazu, dass sich Anfang und Ende ineinander verhaken und sich die Kette schließt. So entstehen unter bestimmten Bedingungen neue Strukturen, die die Forscher „Rotelle“ nennen. Das Wort Rotelle setzt sich aus rotieren und Mizelle zusammen, heißt auf Latein aber auch Rädchen. „Rotellen sind wie Seifenblasen, eine Form von Mizellen, die sich zusätzlich um sich selbst drehen“, so Hartmut Löwen von der Uni Düsseldorf.
Führt man den Mikroroboterketten Energie zu und bringt sie in Bewegung, haben sie also die gleiche Wirkung wie Tenside. Deshalb zählen die Roboter zu den aktiven Tensiden, deren Aktivität und Wirkung man jederzeit beenden kann, indem Energiezufuhr durch den Vibrationsteller abgestellt wird. Dieses Phänomen konnte auch mit Hilfe umfangreicher Modellsimulationen gezeigt werden. „Die Simulationen erlauben es zum Beispiel, die Länge der Ketten oder das Verhältnis der Ketten zu einzelnen Robotern unabhängig voneinander zu variieren, um gezielt nach diesem neuen Zustand zu suchen”, erklärt Thorsten Pöschel von der Uni Erlangen-Nürnberg.
Diese Fähigkeit der Mikroroboterketten kann in Zukunft beispielsweise dabei helfen, ölverseuchte Gewässer zu reinigen, indem die Ketten Öl einschließen, das so leichter abgefischt werden kann. Außerdem wäre die Umweltbelastung durch klassische Tenside reduzierbar. Allerdings sind diese Anwendungsgebiete momentan nur hypothetisch. Um Aufgaben im Mikrometerbereich zu lösen, müssen die Forscher ihren Aufbau noch weiter miniaturisieren. Statt ein Zentimeter müssten die Roboter dann zwischen einem und einem Zehntel Mikrometer groß sein. „Mit der Miniaturisierung verändert sich allerdings auch die physikalische Wirkung“, sagt Michael Engel von der Uni Erlangen-Nürnberg. „Solche Unterschiede bei der Strukturbildung auf verschiedenen Skalen zu verstehen und auszunutzen, ist besonders spannend.“
HHU / RK
Weitere Infos
- Originalveröffentlichung
C. Scholz et al.: Surfactants and rotelles in active chiral fluids, Sci. Adv. 7, eabf8998 (2021); DOI: 10.1126/sciadv.abf8998 - Institut für theoretische Physik II: Weiche Materie (H. Löwen), Heinrich-Heine-Universität Düsseldorf
- Institut für Multiskalensimulation (T. Pöschel), Friedrich-Alexander-Universität Erlangen-Nürnberg