Der globale Kreislauf von organischem Kohlenstoff
Neue Methode ist genauer und liefert einen wichtigen Beitrag zum Verständnis des Klimawandels.
Mit einer neuen Methode hat ein internationales Forscherteam berechnet, mit welcher Geschwindigkeit organischer Kohlenstoff während des Erdzeitalters Neogen in Meeressedimenten gebunden wurde. Die Methode ist genauer als die bislang übliche Methode und kann daher einen wichtigen Beitrag zum Verständnis des Klimawandels und zur Eindämmung seiner Auswirkungen leisten.
Ozeane dienen als Senke für Kohlenstoff. Das bedeutet, dass Kohlenstoff aus der Atmosphäre in den Ozeanen gespeichert wird. Dabei wird jedoch unterschieden zwischen organischem und anorganischem Kohlenstoff. Der in Meeressedimenten gebundene organische Kohlenstoff ist gleichzeitig eine Sauerstoffquelle. Bislang war es üblich, die Massenbilanz zwischen anorganischem und organischem Kohlenstoff zu ermitteln – allerdings gilt diese Methode als ungenau.
Das Ziel des Forscherteam war es, die Rate an Kohlenstoff über einen längeren Zeitraum besser bestimmen zu können. Dazu haben die Wissenschaftler Daten von Tiefseebohrungen an 81 weltweiten Standorten genutzt, um die Geschichte der Vergrabung von organischem Kohlenstoff während des Neogens vor etwa 23 bis 3 Millionen Jahren zu ermitteln. Dieser Ansatz ermöglicht es, die Variabilität über solch einen langen Zeitraum besser bestimmen zu können.
„Unsere Ergebnisse stützen die Vermutung, dass die Kohlenstoffraten im frühen Miozän und Pliozän hoch und im mittleren Miozän niedrig waren“, erklärt Ziye Li vom Zentrum für marine Umweltwissenschaften der Uni Bremen. „Wir haben die Massenakkumulationsrate des organischen Kohlenstoffs direkt aus dem organischen Kohlenstoffgehalt der Meeressedimente berechnet. Möglich ist dies dank der standardisierten Messungen, kombiniert mit gut abgesicherten Altersmodellen von Bohrstandorten aus dem internationalen Bohrprogramm IODP und seinen Vorgängern DSDP und ODP.“ Traditionell basieren die Schätzungen auf der Isotopenzusammensetzung des Kohlenstoffs, was unter anderem eine Reihe von Annahmen über die Kohlenstoffquellen und die wichtigsten Flüsse innerhalb des Kohlenstoffkreislaufs erfordert.
„Unsere neuen Ergebnisse sind ganz anders – sie sind das Gegenteil von dem, was die Isotopenberechnungen vermuten lassen“, sagt Benjamin Mills von der Universität Leeds, ein Experte für die gängigen Isotopenmethoden. „Ich war wirklich überrascht, wie falsch unsere bisherigen Vorstellungen sein könnten.“
Die Forscher gehen davon aus, dass die Kohlenstoff-Bindung oder eher dessen Ausbleiben mit dem temperaturabhängigen bakteriellen Abbau von organischem Material während der Warmzeit im mittleren Miozän zusammenhängt. So würde erwartet, dass dieser Rückkopplungsmechanismus auch während anderer Erwärmungsintervalle in der Erdgeschichte sowie bei einer künftigen Erwärmung des globalen Ozeans zum Tragen kommen könnte.
„Je wärmer die Ozeane werden, desto schwieriger ist es, organischen Kohlenstoff in marinen Sedimenten zu binden – die niedrigsten Raten der Kohlenstoffbindung traten auf, als der Planet warm war“, sagt Yige Zhang von der Texas A&M University.
Die Forschungsergebnisse des Teams legen nahe, dass dieser atmungsähnliche Prozess die Bindung von organischem Kohlenstoff daran hindert, die Kohlenstoffdioxid-Emissionen in die Atmosphäre zu verringern. Wenn Bakterien den organischen Kohlenstoff verarbeiten, wird er in seine ursprüngliche Form als CO2 zurückgeführt. Li bezeichnet die Arbeit des Teams als den Beginn einer potenziell bedeutsamen neuen Methode zur Datenanalyse, die zum Verständnis des Klimawandels und zur Eindämmung seiner Auswirkungen beitragen kann.
MARUM / RK
Weitere Infos
- Originalveröffentlichung
Z. Li et al.: Neogene burial of organic carbon in the global ocean, Nature 613, 90 (2023); DOI: 10.1038/s41586-022-05413-6 - Klimavariabilität der niedrigen Breiten, MARUM – Zentrum für marine Umweltwissenschaften, Universität Bremen