Dem Ursprung des Lebens auf der Spur
Physikalisches Modell erklärt Clusterbildung katalytisch aktiver Moleküle.
Ein mögliches Szenario für den Ursprung des Lebens ist die spontane Organisation von interagierenden Molekülen zu zellartigen Tröpfchen. Diese bilden in der Folge die ersten selbstreplizierenden Stoffwechselzyklen, welche in der Biologie weit verbreitet und in allen Organismen zu finden sind. Diesem Szenario nach müssten sich die ersten Biomoleküle dabei durch langsame, überwiegend ineffiziente Prozesse zusammenschließen. Eine solch langsame Clusterbildung scheint unvereinbar mit der Geschwindigkeit, mit der das Leben entstanden ist. Wissenschaftler der Abteilung Physik der lebenden Materie des MPI für Dynamik und Selbstorganisation haben in Göttingen schlagen jetzt ein alternatives Modell vor, das eine solche Clusterbildung von katalytisch aktiven Molekülen und damit das schnelle Einsetzen der für die Entstehung von Leben erforderlichen chemischen Reaktionen erklärt.
„Dazu haben wir verschiedene Moleküle in einem einfachen Stoffwechselzyklus betrachtet, bei dem jedes Molekül oder Partikel eine Chemikalie produziert, die von dem nächsten verwendet wird“, berichtet Vincent Ouazan-Reboul. „Die einzigen Bestandteile des Modells sind dabei die katalytische Aktivität der Moleküle, ihre Fähigkeit einem selbsterzeugten Konzentrationsgradienten der Chemikalien zu folgen, sowie die Information über die Reihenfolge der Moleküle im Zyklus.“ Unter diesen Voraussetzungen zeigt das Modell die Bildung von katalytischen Clustern, die verschiedene Molekülarten enthalten. Das Wachstum von Clustern erfolgt zudem exponentiell: Die Moleküle können sich also sehr schnell und in großer Zahl zu dynamischen Strukturen zusammensetzen.
Darüber hinaus spielt die Anzahl der Molekülspezies, die am Stoffwechselzyklus teilnehmen, eine Schlüsselrolle für die Struktur der gebildeten Cluster. „Unser Modell führt zu einer Fülle komplexer Szenarien für die Selbstorganisation und macht spezifische Vorhersagen über funktionelle Vorteile, die sich bei einer ungeraden oder geraden Anzahl von beteiligten Spezies ergeben“, betont Ramin Golestanian. „Bemerkenswert ist, dass die nicht-reziproken Interaktionen als notwendiger Bestandteil in unserem vorgeschlagenen Szenario in allen Stoffwechselzyklen zu beobachten sind.“
In einer weiteren Studie fanden die Forscher heraus, dass Selbstanziehung von Molekülen für die Clusterbildung in einem kleinen Stoffwechselnetzwerk nicht erforderlich ist. Stattdessen können Netzwerkeffekte dazu führen, dass sich sogar eigentlich abstoßende Molekülspezies zu Gruppen zusammenschließen. Damit zeigen die Forscher neue Bedingungen auf, unter denen komplexe Wechselwirkungen selbstorganisierte Strukturen schaffen können. Insgesamt fügen die neuen Erkenntnisse der Theorie zur Entstehung des Lebens aus einfachen Molekülen einen weiteren Mechanismus hinzu. Sie decken auf, wie an Stoffwechselnetzwerken beteiligte Moleküle selbstständig komplexe Strukturen bilden können.
MPI-DS / RK
Weitere Infos
- Originalveröffentlichung
V. Ouazan-Reboul, J. Agudo-Canalejo & R. Golestanian: Self-organization of primitive metabolic cycles due to non-reciprocal interactions, Nat. Commun. 14, 4496 (2023); DOI: 10.1038/s41467-023-40241-w - Physik der lebenden Materie, Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen