17.01.2025

Auf dem Weg zur Neudefinition der Sekunde

Neuartige optische Atomuhr erreicht in Vergleich Rekordgenauigkeit.

Die nächste Generation von Atomuhren tickt mit der Frequenz eines Lasers. Das ist rund 100.000-mal schneller als die Mikrowellenfrequenzen der Cäsiumuhren, die zurzeit die Sekunde erzeugen. Diese optischen Uhren sind noch in der Erprobungsphase, doch bereits jetzt sind einige davon hundert Mal genauer. Deshalb sollen sie in Zukunft die Basis für die weltweite Sekunden-Definition im Internationalen Einheitensystem SI werden. Zuvor müssen diese optischen Uhren allerdings ihre Zuverlässigkeit durch wiederholte Tests und weltweite Vergleiche unter Beweis stellen. Jetzt wurde die hohe Genauigkeit in einem neuartigen Uhrentyp unter Beweis gestellt, der das Potenzial hat, Zeit und Frequenz tausend Mal genauer zu messen als die Cäsiumuhren, die aktuell die SI-Sekunde realisieren. Hierfür wurde die neue Ionen-Kristall-Uhr mit anderen optischen Uhren verglichen und ein neuer Genauigkeitsrekord erzielt.

Abb.: Die Ionenfalle der neuartigen In+/Yb+-Kristalluhr in ihrer Vakuumkammer.
Abb.: Die Ionenfalle der neuartigen In+/Yb+-Kristalluhr in ihrer Vakuumkammer. Die Ionen werden in dem Spalt gefangen, der in der Mitte des Bildes zwischen den Goldelektroden erkennbar ist (Pfeil). Eingeblendetes Bild: ein Kristall aus Indium- (pink) und Ytterbium-Ionen (blau).
Quelle: PTB

Weitere Nachrichten zum Thema

Photo
Photo
Photo

In einer optischen Atomuhr werden Atome mit Laserlicht bestrahlt. Hat der Laser genau die richtige Frequenz, dann ändern die Atome ihren quantenmechanischen Zustand. Dabei müssen alle äußeren Einflüsse auf die Atome abgeschirmt oder genau gemessen werden. Bei optischen Uhren mit gefangenen Ionen gelingt das sehr gut. Die Ionen können mittels elektrischer Felder auf wenige Nanometer lokalisiert im Vakuum gefangen werden. Dank hervorragender Kontrolle und Isolation kommt man hier dem Ideal eines ungestörten Quantensystems sehr nahe. Ionenuhren haben daher bereits systematische Unsicherheiten jenseits der 18. Nachkommastelle erreicht. Eine solche Uhr würde, wenn sie seit dem Urknall ticken würde, heute höchstens eine Sekunde nachgehen.

Bisherige Ionenuhren werden mit einem einzelnen Uhren-Ion betrieben. Dessen geringes Signal muss über lange Zeiträume, bis zu zwei Wochen, gemessen werden, um eine Frequenz auf diesem Niveau zu bestimmen. Um das volle Potenzial auszuschöpfen, würde es sogar Messzeiten von mehr als drei Jahren erfordern. Bei der neu entwickelten Uhr wird diese Messdauer durch Parallelisierung drastisch verkürzt: Hier werden in einer Falle mehrere Ionen gleichzeitig gefangen, oft auch verschiedene Ionen kombiniert. Durch ihre Wechselwirkung bilden sie eine neue, kristalline Struktur.

„Dieses Konzept ermöglicht es zudem, die Stärken verschiedener Ionen zu kombinieren“, erklärt Jonas Keller von der Physikalisch-Technischen Bundesanstalt. „Wir verwenden Indium-Ionen wegen ihrer günstigen Eigenschaften zum Erreichen hoher Genauigkeiten. Für eine effiziente Kühlung sind dem Kristall zusätzlich Ytterbium-Ionen beigemischt.“

Eine Herausforderung war die Entwicklung einer Ionenfalle, die einen solchen, räumlich ausgedehnten Kristall genauso genau wie einzelne Ionen als Uhr einsetzen kann. Eine weitere Herausforderung bestand darin, experimentelle Methoden zu entwickeln, um die Kühl-Ionen innerhalb des Kristalls zu positionieren. Das Team um Tanja Mehlstäubler von der PTB konnte diese Fragen mit neuen Ideen beeindruckend lösen: Die Uhr erreicht aktuell eine Genauigkeit nahe der 18. Nachkommastelle.

Für die nötigen Vergleiche mit anderen Uhrensystemen wurden zwei weitere optische und eine Mikrowellenuhr der PTB einbezogen: eine Ytterbium-Einzelionenuhr, eine Strontium-Gitteruhr und eine Cäsium-Fontänenuhr. Hierbei erreichte das Verhältnis der Indium- zur Ytterbium-Uhr erstmals eine Gesamtunsicherheit unterhalb der Grenze, die in der Roadmap zur Neudefinition der Sekunde für derartige Messungen verlangt wird.

Das Konzept verspricht eine neue Generation von Ionenuhren mit hoher Stabilität und Genauigkeit. Es ist auch auf andere Ionenarten anwendbar und eröffnet zudem die Möglichkeit ganz neuer Uhrenkonzepte, etwa den Einsatz von Quanten-Vielteilchenzuständen oder die kaskadierte Abfrage mehrerer Ensembles.

PTB / RK

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen