Anhand eines Planetenpendels können Schülerinnen und Schüler untersuchen, wie sich verschiedene Energieformen ineinander umwandeln. (Bild: Adobe Stock / Павел Сунцов, vgl. S. 24)
Ausgabe lesen
Anhand eines Planetenpendels können Schülerinnen und Schüler untersuchen, wie sich verschiedene Energieformen ineinander umwandeln. (Bild: Adobe Stock / Павел Сунцов, vgl. S. 24)
In dünnen Schichten wurden Antiskyrmionen sowie Skyrmion-Antiskyrmion-Paare nachgewiesen.
In der Mittelstufe gibt es verschiedene Ansätze, um das Energiekonzept zu vermitteln.
Das Energiekonzept ist in der Physik zentral. Mit seiner Hilfe lassen sich Probleme in vielen Sachgebieten und an deren Schnittstellen von der klassischen Mechanik bis zur modernen Quantenphysik elegant lösen. Das Energiekonzept spielt aber auch darüber hinaus eine wichtige Rolle. So erfordert der angemessene Umgang mit einigen der großen Herausforderungen des 21. Jahrhunderts wie dem Klimawandel oder der Energiekrise ein entsprechendes Energieverständnis.
Der großen Bedeutung des Energiekonzepts stehen die Schwierigkeiten gegenüber, die Schülerinnen und Schüler mit seinem Verständnis haben. Dies liegt einerseits in der alltäglichen Verwendung des Begriffs Energie begründet und andererseits in der abstrakten Natur des physikalischen Energiekonzepts. Im Alltag ist oft von Energieerzeugung oder -verbrauch die Rede, oder Energie wird gleichgesetzt mit anderen physikalischen Konzepten: „Die Sonne hat viel Kraft.“ In der Folge kommen die Schülerinnen und Schüler mit einem breiten Spektrum von Vorstellungen zum Energiekonzept in den Schulunterricht. Sie setzen Energie mit menschlicher Aktivität gleich („Ich habe heute viel Energie!“), stellen sich Energie als eine Art universellen Treibstoff vor („Wir laden unser Auto mit Solarenergie!“) oder verstehen Energie als Ressource, die für unsere Gesellschaft von zentraler Bedeutung ist („Wir brauchen mehr Windenergie!“) [1].
Die zentrale Bedeutung des Energiekonzepts leitet sich vor allem aus der abstrakten Eigenschaft ab, dass die Energie eines abgeschlossenen Systems erhalten bleibt. Dies setzt ein Verständnis davon voraus, wie, beziehungsweise in welchen Formen, sich Energie in einem System manifestieren kann; was es also heißt, dass sich diese Formen ineinander umwandeln oder dass Energie in einer gegebenen Form von einem Teil des Systems in ein anderes übergehen kann; dass dabei immer ein Teil der Energie in innere Energie des Systems umgewandelt wird, die Energie des Systems insgesamt aber erhalten bleibt – sofern es abgeschlossen ist [2].
Neuere Forschung zeigt, dass sich das Verständnis der Schülerinnen und Schüler von Energie schrittweise entwickelt – von einem durch Alltagserfahrungen geprägten Verständnis über eines der unterschiedlichen Energieformen, die sich ineinander umwandeln, bis hin zu einem Verständnis, dass und unter welchen Bedingungen Energie erhalten bleibt [3]. Diese Forschung weist aber auch auf eine Reihe von Schwierigkeiten im Verlauf dieser Entwicklung hin. So haben Schülerinnen und Schüler Schwierigkeiten, Energie als Eigenschaft eines Systems zu verstehen [4], interpretieren die Dissipation von Energie als Umwandlung in Reibung [5] oder setzen Energieerhaltung mit dem Alltagskonzept des Energiesparens gleich [6]. Insgesamt erreicht in standardisierten Tests nur ein Drittel aller Schülerinnen und Schüler ein Energieverständnis, das ein physikalisch korrektes Verständnis der Energieerhaltung einschließt [3].
Die Ursache für diese Schwierigkeiten liegt mutmaßlich im weit verbreiteten Ansatz begründet, Energie in der Mittelstufe als Größe einzuführen, die sich in unterschiedlichen Formen manifestiert [7]. (...)
Die gleichzeitige Beobachtung von Gammablitzen und Gravitationswellen stellt unser Wissen über die Eigenschaften der Jets bei den Strahlungsausbrüchen infrage.
Obwohl Jets in verschiedenen astrophysikalischen Szenarien auftreten, ist bisher wenig über die zugrundeliegenden Mechanismen bekannt. Ihre schnelle zeitliche Variation bei Gammablitzen könnte es erlauben, die Struktur und den Emissionsmechanismus besser zu verstehen. Die Multimessenger-Beobachtungen des Gammablitzes GRB 170817A haben erste Einblicke gewährt und an bestehenden Modellen gerüttelt.
Um zu verstehen, wie ein astrophysikalischer Jet funktioniert, gilt es zunächst, seinen Erzeugungsmechanismus zu entschlüsseln. Außerdem stellen sich die Fragen, wie die Beschleunigung auf nahezu Lichtgeschwindigkeit und die Kollimation erfolgen, was seine innere geometrische Struktur ausmacht und welcher Mechanismus der Strahlungsemission zugrundeliegt. Um diese zu beantworten, scheinen die Jets bei Gammablitzen deutlich besser geeignet als diejenigen aus dem Kern Aktiver Galaxien: Während letztere sich auf Zeitskalen von vielen Jahren entwickeln, variieren Gammablitze deutlich schneller. Im Folgenden zeigt das Beispiel von GRB 170817A, wie neue Untersuchungen unseren Blick auf die Jets von Gammablitzen verändert haben. Zukünftig sollte die gleichzeitige Beobachtung von Gammablitzen und Gravitationswellen klären, ob es sich dabei um einen Einzelfall handelt oder einen deutlichen Fortschritt im allgemeinen Verständnis.
Gammablitze (engl. Gamma-Ray Bursts, GRBs) stellen die stärksten beobachteten Ausbrüche von elektromagnetischer Strahlung dar: Sie geben binnen einer Sekunde so viel Energie ab wie unsere Sonne während ihrer gesamten Lebensdauer von rund zehn Milliarden Jahren. Wenn die Elektronen in den Schockwellen dieser Ausbrüche mit der umgebenden Materie wechselwirken, entsteht ein Nachleuchten, das mehrere Tage als Röntgenstrahlung, im optischen Bereich und als Radiowellen sichtbar ist. Aufgrund ihrer Dauer und Ursache unterscheidet man zwei Arten von Gammablitzen (Abb. 1). „Lange“ Ausbrüche erzeugen Blitze, die typischerweise zehn bis hundert Sekunden anhalten und bei der Supernova-Explosion massereicher Sterne entstehen. Die Beobachtung von zwei Dutzend Ausbrüchen in geringer Entfernung zu uns belegt dies durch den Nachweis optischen Lichts der Supernova etwa acht bis zehn Tage nach dem Gammablitz [1]. Massereiche Sterne werden nur einige Millionen Jahre alt – im Gegensatz zu unserer Sonne. Daher treten die Strahlungsausbrüche relativ schnell nach der Entstehung des Muttersterns auf. Da massereiche Sterne häufig in Gruppen vorkommen, zeichnen sich die Muttergalaxien langer Ausbrüche wegen der vielen anderen jungen, heißen Sterne durch eine blaue Farbe und eine hohe Sternentstehungsrate aus. Lange Blitze lassen sich bis an den „Rand des Universums“ beobachten: Sie gehören zu den am weitesten entfernten bekannten Objekten. In den vergangenen zehn Jahren dienten sie in der Kosmologie dazu, die Entstehung der ersten Sterne und Galaxien zu untersuchen. (...)
Hans-Jürgen Treder (1928 – 2006) war einer der prominentesten Physiker der DDR. Im Fokus seines Schaffens standen physikalische Prinzipienfragen und das Erbe Einsteins.
Der Physiker Hans-Jürgen Treder ist heute eher unbekannt und sein Werk weitgehend in Vergessenheit geraten, obwohl ihm manche zutrauten, in die Riege der Nobelpreisträger aufzusteigen. Darüber hinaus war Treder in der DDR aber auch wegen seines breiten Wissens und markanten Auftretens als prototypischer „Gelehrter“ eine Person der Öffentlichkeit [1], um den sich Legenden und Anekdoten ranken. Der nachfolgende Beitrag versucht, den „Einstein der DDR“ in seiner Differenziertheit und Ambivalenz zu würdigen.
Zum 100. Geburtstag Albert Einsteins fand 1979 in der DDR eine Vielzahl von Gedenkveranstaltungen statt. Den Höhepunkt bildeten ein staatlicher Festakt und eine hochkarätige Konferenz mit internationaler Wissenschaftsprominenz, beide in (Ost-)Berlin. Spiritus rector und Organisator der Tagung war der Physiker Hans-Jürgen Treder. Nach seinen Worten sollte diese nicht nur Einsteins wissenschaftliche und geschichtliche Rolle würdigen, sondern auch einen „Überblick über die Grundlagen der Wissenschaft unserer Zeit, über gesellschaftliche, philosophische und fachwissenschaftliche Leistungen, Aufgaben und Probleme, immer gesehen unter den Aspekten von Einsteins Denken“ bieten ([2], S. 7).
In diesem Diktum spiegelt sich die eigene lebenslange und konkrete Bezugnahme auf Ideen des „größten Physikers unserer Zeit“ ([3], S. 63). Treders Schaffen war in besonderer Weise auf die „Grundlagen der Wissenschaft“ gerichtet – stets unter Einbeziehung erkenntnistheoretischer und historischer Aspekte. Er pflegte einen aktiven Umgang mit dem Erbe Einsteins und dem Werk anderer bedeutender Physiker aus dem historischen Umfeld der „Großen Berliner Physik“ – ein Terminus, den er zusammen mit seinem Kollegen und Mentor Robert Rompe ab Mitte der 1970er-Jahre propagiert hatte ([4], S. 9). Sein Habitus und Denkstil machten Treder zu einem klassischen Vertreter grundlagenorientierter physikalischer Forschung, in dem die DDR-Führung eine Projektionsfläche für ihr Streben nach wissenschaftlicher und politischer Reputation fand. Der Doyen der DDR-Gesellschaftswissenschaften Jürgen Kuczynski, ein Vertrauter Treders, formulierte es gar so ([5], S. 65): „Wenn sich an unserer Akademie [der Wissenschaften der DDR] auch kein Genie befindet, so haben wir doch ihn als dem Genie am nächsten Kommenden“. (...)
761. WE-Heraeus-Seminar
745. WE-Heraeus-Seminar
Bad Honnef Physics School
Bad Honnef Physics School
TRANSENS Sommerschule
Workshop der Heisenberg-Gesellschaft