Physik Journal 10 / 2017

Cover

Wasser fasziniert durch zahlreiche Ano­malien, die nicht allein durch die Bildung von Wasserstoffbrückenbindungen zu verstehen sind. (Bild: Robert_S / Shutterstock, vgl. S. 41)

Meinung

Belohnung für Referees?Eberhard Bodenschatz10/2017Seite 3

Belohnung für Referees?

Publons unterstützt Publikationshäuser bei der Gutachtertätigkeit, speichert allerdingsverschiedenste Daten und übermittelt diese an andere Partnerinstitutionen.

Inhaltsverzeichnis

Oktober 201710/2017Seite 1

Oktober 2017

Wasser fasziniert durch zahlreiche Ano­malien, die nicht allein durch die Bildung von Wasserstoffbrückenbindungen zu verstehen sind. (Bild: Robert_S / Shutterstock, vgl. S. 41)

Aktuell

Alexander Pawlak / ESA10/2017Seite 6

ESOC: Europas langer Arm in den Weltraum

Kerstin Sonnabend10/2017Seite 7

S-DALINAC: Energie erfolgreich zurückgewonnen

Kerstin Sonnabend / BMBF / MPG10/2017Seite 8

Max Planck Schools: Neues Konzept im Test

Maike Pfalz10/2017Seite 10

Denkschrift: Aussichtsreiche Astrophysik

Kerstin Sonnabend / IPP10/2017Seite 12

Wendelstein 7-X: Auf ein Neues

Kerstin Sonnabend10/2017Seite 12

Indien: Jagd nach Dunkler Materie

Anja Hauck10/2017Seite 12

Neues Forschungsgebäude

Maike Pfalz10/2017Seite 14

Voyager: Was nie ein Mensch zuvor gesehen hat

Matthias Delbrück10/2017Seite 15

China: Langer Marsch ganz schnell

Rainer Scharf10/2017Seite 16

USA

Windenergie legt zu / Trumps Forschungsprioritäten /Klima- und Umweltmanöver / Da waren es nur noch drei / Adieu Cassini

Leserbriefe

Matthias Vaupel10/2017Seite 18

Ungeklärte Ursachen

Zu: J. Marotzke, Die Klimaforschungmuss ihren Blick schärfen,Physik Journal, Juli 2017, S. 3

Christian Holtzhaußen10/2017Seite 18

Notwendiger Verzicht

Zu: J. Guck, Elektromobilität erfahren, Physik Journal, Mai 2017, S. 3

High-Tech

Michael Vogel10/2017Seite 20

Haltlose Muschel; Kraftwerk im Stoff; Terroristen erkennen

Im Brennpunkt

Rydbergs Baukasten für die QuantensimulationMatthias Weidemüller10/2017Seite 22

Rydbergs Baukasten für die Quantensimulation

Experimente mit riesigen Rydberg-Atomen erlauben die präzise Kontrolle der dipolaren Wechselwirkung über mesoskopische Distanzen.

Folgenreicher NachweisGuido Drexlin und Kathrin Valerius10/2017Seite 24

Folgenreicher Nachweis

Erstmals ist der Nachweis der kohärenten Streuung von Neutrinos an Kernen gelungen.

Forum

European XFEL: Röntgenblitzlicht und MolekülkinoAlexander Pawlak10/2017Seite 26

European XFEL: Röntgenblitzlicht und Molekülkino

Am Röntgenlaser European XFEL hat der Forschungsbetrieb begonnen.

Viele Forscherinnen und Forscher aus aller Welt dürfte es von nun an in ein schmuckloses Gewerbegebiet ins schleswig-holsteinische Schenefeld ziehen. Grund dafür sind nicht die dortigen Autowerkstätten, sondern der stärkste Röntgenlaser der Welt: der Europäische Freie-Elektronen-Röntgenlaser, kurz European XFEL.1) Oberirdisch ist davon nicht viel zu sehen, denn der Röntgen­laser erstreckt sich in einem Tunnel von 3,4 Kilometern Länge vom DESY in Hamburg bis zur Experimentierhalle unterhalb des modernen Hauptgebäudes der neuen Großforschungseinrichtung. Der European XFEL ist das weltweit leistungsfähigste Blitzlicht und die schnellste Hochgeschwindigkeitskamera für die Nanowelt. Er soll es ermöglichen, die Struktur komplexer Biomoleküle aufzuklären, chemische Reaktionen „in Echtzeit“ zu filmen oder extreme Materie­zustände bzw. neuartige Werkstoffe zu untersuchen.

„Was vor über 20 Jahren als Vision bei DESY begann und auf den Weg gebracht wurde, ist heute Wirklichkeit“, freute sich Helmut Dosch, Vorsitzender des DESY-Direktoriums, beim offiziellen Start des Forschungsbetriebs am 1. September. Anwesend waren die Forschungsminister bzw. Vertreter aller elf Partnerländer, darunter Russland, Frankreich, Dänemark und die Schweiz. Großbritannien befindet sich im Beitrittsprozess. Nun können sich Forschergruppen aus aller Welt in einem Auswahlverfahren um „Strahlzeit“ am European XFEL bewerben – in der Regel ein bis zwei Wochen pro Gruppe und Experiment.

Ein solch komplexes Großgerät lässt sich nicht einfach anschalten; nach und nach galt es, Meilensteine zu meistern. Die supraleitende Beschleunigertechnik und die Erzeugung des Röntgenlaserlichtes (Infokasten) wurden am 315 Meter langen Freie-Elektronen-Laser FLASH am DESY getestet und stehen dort seit 2005 für die Forschung zur Verfügung. Der zehnmal längere European XFEL beschleunigt die Elektronen auf 17,5 GeV statt nur auf 1 GeV bei FLASH und kann mit einer deutlich kleineren minimalen Wellenlänge (0,05 nm statt 4,1 nm) bis in die atomaren Details von Molekülen vordringen. Das machte die Inbetriebnahme noch anspruchsvoller und zeitaufwändiger. Jeder Schritt, ob die Erzeugung der Elektronen am Injektor beim DESY, ihre Beschleunigung im 1,7 Kilometer langen supraleitenden Linearbeschleuniger oder Führung und -anpassung der erzeugten Röntgenlaserstrahlung, geschieht an der Grenze des technisch Machbaren. Daher dauerte es vom ersten Röntgenstrahl am Ende des Tunnels am 27. Mai bis zum 23. Juni, bis die ersten Röntgen­quanten die Experimentierhalle erreichten. Knapp eine Woche später ließ sich erstmals kohärente Röntgenbeugung demonstrieren. Anfang August bot eine DPG-Recherchereise einen ersten Einblick in die Messstationen, an denen die Stunde der Experimentatoren geschlagen hat − zunächst der für die Entwicklung und Betreuung zuständigen Forscher des European XFEL, die seit September mit den Gastwissenschaftlern eng zusammenarbeiten...

weiterlesen
Phänomenale PhänomeneMaike Pfalz10/2017Seite 30

Phänomenale Phänomene

Weltweit gibt es hunderte von Science Centern, die zum Experimentieren einladen. Ein wichtiger Vorreiter in Deutschland ist die Phänomenta in Flensburg.

Als erstes höre ich ein Muhen, direkt danach erklingt die Sirene eines Krankenwagens, um abgelöst zu werden vom Krähen eines Hahns. Nein, ich bin nicht auf einem Bauernhof gelandet oder an einer belebten Straße, sondern im Science Center Phänomenta. Hier geht es ausgesprochen lebhaft zu: So laden bereits im Eingangsbereich verschiedene Experimente mit Wasser zum Ausprobieren ein – etwa ein drehbarer Brunnen mit verschiedenen Fontänen, die das Wasser parallel zueinander ausspucken. Doch sobald der Brunnen sich in Bewegung setzt, überkreuzen sich die Wasserstrahlen. Unweigerlich kommt man ins Grübeln – was passiert hier und warum?

Dieses „Warum“ steht im Mittelpunkt jedes Science Centers. Ziel dieser Ausstellungshäuser ist es, durch interaktive Exponate, die nicht hinter Glaskästen verborgen stehen, zum Mitmachen anzuregen. Dieses spielerische Experimentieren ist darauf ausgerichtet, dem Besucher technische und naturwissenschaftliche Zusammenhänge anhand von Phänomenen nahezubringen. Der Lerneffekt beruht dabei auf der persönlichen Auseinandersetzung mit dem Ausstellungsstück. Das Exploratorium in San Francisco, das 1969 – initiiert von Frank Oppenheimer – seine Tore öffnete, gilt weltweit als erstes Science Center. Die ersten Science Center in Europa entstanden in den 1980er-Jahren.

In Deutschland gehört die Phänomenta in Flensburg zu den Vorreitern: Initiator dieses Science Centers ist der Physikdidaktikprofessor Lutz Fiesser von der Europa-Universität Flensburg, der sich Anfang der 1980er-Jahre intensiv mit Unterrichtsforschung befasste. Dabei hat er mit Erschrecken festgestellt, wie ineffektiv, ja sogar hinderlich, der Unterricht zu der Zeit war. „Wir konnten damals zeigen, dass es besser wäre, Physik gar nicht zu unterrichten. Dann hätten die Schüler wenigstens nicht einen solchen Horror vor diesem Fach entwickelt“, erzählt Lutz Fiesser. Im Jahr 1981 richteten die Biologen in Flensburg ein Freilandlabor ein, in dem Fiesser auch physikalische Fragestellungen unterbrachte, z. B. diejenige, warum sich vor einem Finger, den man in einen Bach hält, Wellen entwickeln. Sein persönliches Aha-Erlebnis hatte er 1984, als im Fernsehen über eine Ausstellung in Zürich berichtet wurde. „Ich war völlig von den Socken: In der Ausstellung haben Erwachsene experimentiert und dafür sogar Geld bezahlt. Mir war sofort klar, dass ich mir das vor Ort ansehen muss“, erinnert sich Lutz Fiesser...

weiterlesen

Überblick

Schritte zum LebenThomas K. Henning10/2017Seite 35

Schritte zum Leben

Neue experimentelle Methoden und die Entdeckung erdähnlicher Exoplaneten bieten vielversprechende Ansätze, um der Entstehung des Lebens auf die Spur zu kommen.

Die Frage nach dem Ursprung des Lebens ist alt und trotz vieler Ansätze noch unbeantwortet. Die Entdeckung extrasolarer Gesteinsplaneten hat das Interesse daran neu entfacht und in einen astronomischen Kontext gestellt. Neue Konzepte, um den Übergang von lebloser zu lebender Materie zu verstehen, erfordern es, physikalische und chemische Perspektiven stärker zu berücksichtigen.

Die Entstehung des Lebens auf der Erde und möglicherweise auf anderen erdähnlichen (terrestrischen) Planeten steht am Ende einer langen Kette von Entwicklungsprozessen im Universum, von der Bildung der Galaxien bis hin zur Entstehung von Sternen und der mit ihnen verbundenen Planetensysteme [1, 2]. Die Entwicklung von Sternen hängt wiederum unmittelbar mit der Kernsynthese der für das Leben notwendigen Elemente zusammen, seien es Kohlenstoff, Sauerstoff und Stickstoff oder Phosphor und Schwefel. Zusammen mit Wasserstoff bilden sie die Grundelemente für die DNA, welche die Erb­information trägt, und die in Proteinen vorkommenden Aminosäuren.

Unterdessen deuten viele astronomische Beobachtungen darauf hin, dass die Mehrzahl der Planeten Gesteinsplaneten sind, wie etwa der kürzlich um den sonnennächsten Stern Proxima Centauri entdeckte Planet [3] (Abb. 1). Dieser gehört zu einer Handvoll bislang entdeckter Gesteinsplaneten, die sich in der „bewohnbaren“ Zone befinden (Abb. 2), also dort, wo flüssiges Wasser existieren könnte. Proxima Centauri (Spektralklasse M6) ist allerdings ein sehr aktiver Stern, sodass unklar bleibt, ob tatsächlich Wasser auf dem Planeten existieren kann...

weiterlesen
Wasser – ein besonderer StoffUdo Kaatze10/2017Seite 41

Wasser – ein besonderer Stoff

Die faszinierenden Eigenschaften von Wasser lassen sich nicht allein durch die Existenz von Wasserstoffbrückenbindungen erklären.

Der einfache Aufbau von Wassermolekülen aus einem Sauerstoffatom und zwei Wasserstoffatomen lässt nicht ahnen, wie zahlreich die Anomalien des Wassers sind. Die Fähigkeit, Wasserstoffbrücken­bindungen aufzubauen, reicht nicht aus, um alle Besonderheiten zu erklären. Erst das Einbeziehen des komplizierten Zusammenspiels mit weiteren Eigenschaften des Mole­küls erlaubt ein tieferes Verständnis.

Wasser ist auf unserem Planeten allgegenwärtig und zugleich die einzige Substanz, die unter natürlichen Bedingungen in allen drei Aggre­gatzuständen existiert. Wasser ist die Grundlage unseres Lebens und beeinflusst es auf globalen und mikroskopischen Skalen. Es bedeckt mehr als 70 Prozent der Erde – in Form von Ozeanen, Seen, Flüssen, Gletschern und den Eiskappen sowie als Grundwasser. Das weitgehend ausgeglichene Klima unserer Erde beruht auf seiner hohen Wärmekapazität. Die Atmosphäre enthält nur einen geringen Anteil von etwa 10–5 des gesamten Wassers als Dampf, Wolken oder Regentropfen. Weil dieses Wasser 37-mal pro Jahr ausgetauscht wird, ergibt sich eine enorme Regenmenge von 2,2  1014 m3 [1]. Das entspricht einer gleichmäßigen Überdeckung der Erdoberfläche mit einer Wasserschicht von 44 cm. Der Wasseraustausch beeinflusst das Wetter maßgeblich und versorgt Pflanzen als Regen mit der für das Wachsen und Überleben notwendigen Wassermenge. Kontinuierlich greift der Niederschlag geologische Strukturen und menschliche Bauten bis hin zur Zersetzung an.

Die enorme Bedeutung von Wasser für die Biosphäre verdeutlicht bereits der hohe Wasseranteil von Lebewesen. Wir Menschen bestehen im Mittel aus bis zu 70 Prozent Wasser, bei wirbellosen Meerestieren steigt dieser Anteil auf bis zu 96 Prozent. Molekulare Lebensvorgänge verlaufen nahe­zu ausschließlich in wässriger Phase. Dabei ist Wasser nicht nur neutrales Medium, in dem spezifische Partner chemisch reagieren, während seine große Wärmekapazität und Verdampfungswärme für optimale Temperaturen sorgen. Vielmehr beeinflussen seine speziellen Eigenschaften biologische Strukturen wie die Doppelhelixstruktur der DNS und die Konformation von Proteinen, sodass es eine wesentliche Komponente in der Wirkungsweise von Lebensvorgängen auf molekularer und zellulärer Ebene darstellt...

weiterlesen

Lehre

Vom Staub der Zeit befreitPeter Heering10/2017Seite 49

Vom Staub der Zeit befreit

Die Geschichte der Physik bietet neue Zugänge, um Fachwissen und Kompetenzen zu entwickeln.

Im Physikunterricht hat die Geschichte der Physik lange nur eine geringe Rolle gespielt. Bedingt durch veränderte schulische Bildungsziele haben historisch orientierte Unterrichtsansätze im deutschen Sprachraum an Bedeutung gewonnen – eine Entwicklung, die vergleichbar auch in Nord­amerika und anderen westeuropäischen Ländern statt­findet. Zwei konkrete Ansätze sollen zeigen, welches Poten­zial die Geschichte der Physik für die Schule bietet.

Die Geschichte der Physik wurde schon seit langer Zeit im Hinblick auf naturwissen­schaftliche Bildungsprozesse dargestellt. Klassische Arbeiten wie die von Einstein und Infeld verfasste Monographie [1] oder die durch J. B. Conant herausgegebenen Fallstudien [2] entstanden aus dem Inter­esse heraus, zu einer naturwissenschaftlichen Bildung beizutragen. Dabei bezogen sie sich auf einen Unterricht, der im Wesentlichen auf die Vermittlung von Fachwissen abzielte. Der in den letzten zehn Jahren etablierte kompetenzorientierte Physikunterricht stellt aber Anforderungen, die sich durch die Ergänzung der bestehenden Ansätze mittels historisch angelegter Unterrichtssequenzen oder -stunden gut erfüllen lassen. Die aktuellen Bildungsstandards für den Physikunterricht fordern einerseits, dass der Unterricht Fachwissen vermitteln soll. Andererseits gilt es, prozedurale Kompetenzen zu fördern – diese unterteilen sich in die Bereiche Bewertung, Erkenntnisgewinn und Kommunikation. Eine separate Entwicklung dieser Kompetenzen ist nicht ratsam, sondern eine eng miteinander verknüpfte Förderung. Die Geschichte der Physik ermöglicht es, fachwissenschaftliche und prozedurale Kompetenzen gemeinsam zu entwickeln. Hierfür existieren verschiedene Ansätze – speziell im deutschen Sprachraum hat sich das Nachvollziehen historischer Experimente etabliert [3, 4]. Obwohl dieser Ansatz aus dem klassischen lernzielorientierten Physikunterricht stammt, eignet er sich auch für den kompetenzorientierten Fall...

weiterlesen

Geschichte

Eine neue „Landschaft“ des UnsichtbarenJürgen Teichmann10/2017Seite 53

Eine neue „Landschaft“ des Unsichtbaren

Vor 200 Jahren veröffentlichte Joseph Fraunhofer seine Beobachtung der dunklen Linien im Sonnenspektrum.

Angefangen als gelernter Glasschleifer, entwickelte Joseph Fraunhofer Anfang des 19. Jahrhunderts schnell erstaunliche technische Fähigkeiten und wissenschaftliches Interesse an völlig neuen Fragen. So gelang es ihm mit einer selbst entworfenen Prismenkonstruktion, die nach ihm benannten Spektrallinien im Sonnenspektrum zu entdecken und aufzuzeichnen. Doch Joseph Fraunhofer war seiner Zeit weit voraus, sodass seine Ergebnisse lange kein wissenschaftliches Publikum fanden.

Joseph Fraunhofers von ihm selbst „gezeichnete und ge­äzte“ Darstellung seiner dunklen Linien im Sonnenspektrum ist wohl bekannt. Vor 200 Jahren, im Herbst 1817, wurden die schwarz-weißen Abdrucke in den „Denkschriften der Bayerischen Akademie der Wissenschaften“ veröffentlicht.1) Darüber hinaus gibt es drei handkolorierte Exemplare, zwei davon befinden sich im Deutschen Museum in München und ein weiteres im Goethe-Nationalmuseum in Weimar.

Wie kam Fraunhofer zu seiner Entdeckung? Astronomie bedeutete damals noch ausschließlich die exakte Beobachtung von Lichtpunkten am Himmel und die Berechnung ihrer Bewegung – sofern möglich – mithilfe der Himmelsmechanik. In der Optik regierte die Korpuskulartheorie des Lichtes, die neue Wellentheorie war gerade erst geboren. Eine optische Industrie gab es noch nicht, nur erfolgreiches Handwerk – vor allem in England. Das wurde allerdings auch auf dem Kontinent nötig, seitdem die Wirtschaftsblockade Frankreichs gegenüber England ab 1806 (die „Kontinentalsperre“) jeden Waren­austausch verhinderte. Auch das war ein Grund, warum Joseph Fraunhofer in diesem Jahr im Alter von 19 Jahren vom Unternehmer Joseph Utzschneider in dessen neuem optischen Unternehmen in Benediktbeuern bei München angestellt wurde...

weiterlesen

Physik im Alltag

Bitte nicht störenBernd Müller10/2017Seite 58

Bitte nicht stören

Auch im Digitalzeitalter ist es wichtig, Kabel gegen elektromagnetische Störungen abzuschirmen.

Menschen

10/2017Seite 61

Personalien

10/2017Seite 64

Nachruf auf Hans Gerhard Bennewitz

10/2017Seite 65

Nachruf auf Günther Schmidt

Kerstin Sonnabend10/2017Seite 66

„Wir geben Ideen für spannenden Unterricht eine Bühne.“

Interview mit Jörg Gutschank

Bücher/Software

Jan C. Schmidt10/2017Seite 68

Thomas Kirchhoff et al. (Hrsg.): Naturphilosophie. Ein Lehr- und Studienbuch

Metin Tolan10/2017Seite 68

Mark E. Lasbury: The Realization of Star Trek Technologies

DPG

10/2017Seite 29

Ein Tag vor Ort – Laborbesichtigungs­programm

10/2017Seite 34

DPG-Arbeitstagung: Forschung – Entwicklung – Innovation: Mobilität der Zukunft

10/2017Seite 60

DPG-Nachwuchspreis für Beschleuniger­physik / Young Scientist Award for Socio- and Econophysics

10/2017Seite 70

Zusammenkommen, austauschen, vernetzen / Von Studierenden für Studierende

Tagungen

Ulrich Kleinekathöfer, Mathias Winterhalter und Meni Wanunu10/2017Seite 72

Transport Mechanisms in Biological and Synthetic Nanopores and -channels

648. WE-Heraeus-Seminar

Albert Roura, Rainer Kaltenbaek und Magdalena Zych10/2017Seite 72

Gravitational Decoherence

646. WE-Heraeus-Seminar

Martin Eckstein und Michael Knap10/2017Seite 72

Emergent phenomena and universality in correlated quantum systems far away from equilibrium

645. WE-Heraeus-Seminar

Leonard Heymann, Christian Klinke und Nikolai Gaponik10/2017Seite 73

Exciting nanostructures: Probing and tuning the electronic properties of confined systems

nternational WE-Heraeus Physics School

Martin Visbeck und David Marshal10/2017Seite 73

Physics of the Ocean

WE-Heraeus-Sommerschule

Weitere Rubriken

10/2017Seite 74

Tagungskalender

10/2017Seite 75

Notizen

Aktuelle Ausgaben

11 / 2024

10 / 2024

8-9 / 2024

7 / 2024

6 / 2024

5 / 2024

weitere Ausgaben

Themen