13.04.2022 • LaserMaterialwissenschaften

Tiefer Einblick mit Neutronen aus der Laserquelle

Erstmals mit Lasern erzeugte Neutronen für eine industrielle Anwendung nutzbar gemacht.

Neutronen, die kompakt mit Lasern erzeugt werden, können in der zerstörungs­freien Material­prüfung zum Einsatz kommen. Das konnte ein Forscher­team um Marc Zimmer und Markus Roth von der TU Darmstadt jetzt erstmals zeigen. Als elektrisch neutrale Teilchen durch­dringen Neutronen Materie relativ leicht. Daraus ergeben sich viel­fältige Anwendungs­möglich­keiten wie etwa die Prüfung von Behältern mit radio­aktivem Abfall.

Abb.: An der TU Darm­stadt wurden erst­mals An­wen­dun­gen mit...
Abb.: An der TU Darm­stadt wurden erst­mals An­wen­dun­gen mit laser­ge­trie­benen Neu­tro­nen­quellen de­mon­striert. Der Laser trifft auf ein Target und dient dabei als kom­pakter Teil­chen­be­schleu­ni­ger. Die Ionen tref­fen auf ein da­hinter lie­gen­des Kon­verter-Mate­rial, in dem Neu­tro­nen pro­du­ziert werden, welche es er­mög­lichen zer­stö­rungs­frei Ob­jekte zu unter­suchen. (Bild: M. Roth, TU Darm­stadt)

Zwar lässt sich beispiels­weise mit Röntgen­strahlung ins Innere von Objekten sehen. Leichte Elemente wie Wasserstoff oder organische Substanzen lassen sich so aber nur schwer erkennen und unter­scheiden, besonders, wenn sie sich hinter schwereren, abschirmenden Elementen befinden. Abhilfe kann hier die Verwendung von Neutronen liefern, die auf diese Materialien besonders sensitiv sind und Abschirmungen wie Blei mühelos durch­dringen können.

Dazu kommt, dass sich mit Hilfe von Neutronen verschiedene Isotope unter­schieden lassen, was es ermöglicht, die räumliche Verteilung von Isotopen innerhalb eines Objekts eindeutig zu bestimmen. Beschießt man also ein Unter­suchungs­objekt mit Neutronen, lässt sich aus der Isotopen­verteilung auf seinen Inhalt schließen.

Das ist vor allem für den Rückbau kern­tech­nischer Anlagen von hoher Bedeutung, da dort im letzten Jahr­hundert große Mengen an Behältern mit radio­aktivem Abfall produziert und in Zwischen­lagern unter­ge­bracht wurden. Bevor diese jedoch weiter in Endlager gebracht werden können, müssen deren Inhalte eindeutig identi­fi­ziert werden. Das erweist sich mit klassischer Röntgen­technik als schwierig, da diese Behälter oftmals so konzipiert sind, dass sie für diese Art der Strahlung möglichst undurch­sichtig sind.

Neutronenstrahlen werden üblicher­weise an großen Teilchen­beschleuniger­anlagen erzeugt, deren Bau und Betrieb äußerst kosten­intensiv sind. Erschwerend kommt hinzu, dass die zu unter­suchenden Objekte nicht zu den wenigen existie­renden Groß­anlagen trans­portiert werden können. Diese Technik ist damit einem Großteil der Industrie nicht zugänglich.

Das Forscherteam hat es jetzt jedoch geschafft, die konven­tio­nellen Beschleuniger durch einen hoch intensiven Laser zu ersetzen und damit Neutronen zu erzeugen. Dadurch wurde die Strecke von typischer­weise hunderten von Metern, die zur Beschleunigung und die Vermessung der Proben notwendig ist, auf unter zwei Meter reduziert. Möglich wurde das zum einen durch die Verwendung von ultra-kurzpuls-Lasern, basierend auf der „Chirped-Pulse-Amplification“-Methode. Zum anderen wurden für die Unter­suchungen am GSI Helmholtz­zentrum für Schwer­ionen­forschung in Darmstadt die Bedingungen so weit optimiert, dass gleich mehrere industriell relevante Anwendungen demonstriert werden konnten.

Im Experiment konnte gezeigt werden, dass eine derartige kompakte laser­getriebene Neutronen­quelle tatsächlich dafür genutzt werden kann, zerstörungs­frei verschiedene Isotope in Werkstücken zu identi­fi­zieren und sogar räumlich sichtbar zu machen. In einem der Werkstücke konnte zudem eine vorher unbekannte Verun­reinigung nach­ge­wiesen werden. Neben dem Einsatz für radio­aktive Abfälle sind mit der Neutronen­quelle auch andere Anwendungen vorstellbar, etwa die zerstörungs­freie Unter­suchung von archäo­logischen Fundstücken oder das Sicht­bar­machen des Treib­stoff­flusses innerhalb eines Motors im laufenden Betrieb.

TU Darmstadt / RK

Weitere Infos

 

 

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen