Nanoplastik aufspüren – in Sekundenbruchteilen
Neues Verfahren auf Basis der Raman-Streuung kann sogar einzelne Partikel nachweisen.
Als Mikroplastik bezeichnet man winzige, kaum sichtbare Plastikpartikel, die in die Umwelt gelangen und Schaden anrichten können, zum Beispiel, wenn sie von Tieren gefressen werden. Schwer abzuschätzen ist bisher der Effekt von noch kleineren Partikeln, die mit herkömmlichen Methoden kaum nachgewiesen werden können: Bei Plastikteilchen mit einem Durchmesser von weniger als einem Mikrometer spricht man von „Nanoplastik“. Solche winzigen Partikel können sogar in lebende Zellen eindringen. An der TU Wien gelang es jetzt, eine Messmethode zu entwickeln, mit der sogar einzelne Nanoplastik-Partikel nachgewiesen werden können – und das um Größenordnungen schneller als mit bisherigen Techniken. Die neue Methode soll nun zur Grundlage neuer Messgeräte für die Umweltanalytik werden.
„Wir verwenden ein physikalisches Prinzip, das auch bisher schon oft in der chemischen Analytik verwendet wurde, nämlich die Raman-Streuung“, erklärt Sarah Skoff vom Atominstitut der TU Wien. Dabei werden Moleküle mit einem Laserstrahl beleuchtet und dadurch zum Vibrieren gebracht. Ein Teil der Energie des Laserlichts wird somit in Vibrationsenergie umgewandelt, der Rest der Energie wird wieder in Form von Licht abgestrahlt.
Wenn man dieses Licht misst und seine Energie mit dem ursprünglich eingestrahlten Laserlicht vergleicht, weiß man, mit welcher Energie das Molekül vibriert – und weil unterschiedliche Moleküle auf unterschiedliche Weise vibrieren, lässt sich auf diese Weise herausfinden, um welches Molekül es sich handelt.
„Gewöhnliche Raman-Spektroskopie wäre aber für den Nachweis von kleinstem Nanoplastik nicht geeignet“, sagt Skoff. „Das wäre viel zu wenig empfindlich und würde viel zu lange dauern.“ Das Forschungsteam musste sich daher auf die Suche nach komplizierteren physikalischen Effekten machen, mit denen sich diese Technik deutlich verbessern lässt.
Man adaptierte dafür ein Verfahren, das in ähnlicher Form schon zum Nachweis von Biomolekülen verwendet wurde. Die Probe wird dafür auf einem extrem feinen Gitter aus Gold platziert, welches mit einem Laser bestrahlt wird. Die einzelnen Golddrähte sind nur vierzig Nanometer dick und etwa sechzig Nanometer voneinander entfernt. „Dieses Metallgitter wirkt wie eine Antenne“, sagt Skoff. „Durch das Gitter wird das Laserlicht an bestimmten Stellen verstärkt – dort kommt es daher zu einer viel intensiveren Wechselwirkung mit den gesuchten Molekülen. Außerdem kommt es zu einer Wechselwirkung zwischen dem Molekül und den Elektronen im Metallgitter, die dafür sorgt, dass das Lichtsignal der Moleküle zusätzlich verstärkt wird.“
Das Licht, das dann von den Molekülen ausgesandt wird, muss bei gewöhnlicher Raman-Spektroskopie normalerweise in all seine Wellenlängen zerlegt werden, um daraus ablesen zu können, um welches Molekül es sich handelt. Das Team der TU Wien konnte aber zeigen, dass es auch einfacher geht. „Wir wissen, was die charakteristischen Wellenlängen der Nanoplastik-Partikel sind, und suchen daher ganz gezielt nach Signalen bei genau diesen Wellenlängen“, erklärt Skoff. „Wir konnten zeigen, dass sich die Messgeschwindigkeit dadurch um mehrere Größenordnungen verbessern lässt. Bisher musste man zehn Sekunden messen, um einen einzigen Pixel des gesuchten Bilds zu erhalten – bei uns dauert es bloß einige Millisekunden.“ Versuche mit Polystyrol zeigten, dass auch bei dieser sehr hohen Geschwindigkeit die Nanoplastik-Partikel zuverlässig nachgewiesen werden können – und zwar auch bei extrem niedriger Konzentration. Im Gegensatz zu anderen Methoden erlaubt diese Technik sogar den Nachweis einzelner Partikel.
Das Forschungsteam will nun die Einsatzmöglichkeiten der neuen Technik noch genauer untersuchen – etwa die Frage, wie man damit Nanoplastik in umweltrelevanten oder biologischen Proben nachweisen kann, beispielsweise in Blut. „Dass das physikalische Grundprinzip funktioniert, konnten wir nun jedenfalls zeigen“, sagt Skoff. „Damit ist prinzipiell das Fundament für die Entwicklung neuer Messgeräte gelegt, mit denen man in Zukunft auch außerhalb des Labors direkt in der Natur Proben untersuchen kann.“
TU Wien / RK
Weitere Infos
- Originalveröffentlichung
A. Shorny et al.: Imaging and identification of single nanoplastic particles and agglomerates, Sci. Rep. 13, 10275 (2023); DOI: 10.1038/s41598-023-37290-y - Solid-state quantum optics and nanophotonics (S. Skoff), Atominstitut, Technische Universität Wien, Österreich