Maschinelles Lernen entschlüsselt kosmische Beben
Neuronales Netz analysiert Gravitationswellen in Echtzeit.
Ein interdisziplinäres Forscherteam des MPI für Intelligente Systeme in Tübingen und des MPI für Gravitationsphysik – Albert-Einstein-Institut in Potsdam hat einen Algorithmus entwickelt, der ein tiefes neuronales Netz verwendet, um aus mit LIGO und Virgo empfangenen Gravitationswellen sekundenschnell auf die Eigenschaften der beiden miteinander verschmelzenden schwarzen Löcher zu schließen. „Unsere Methode kann in wenigen Sekunden sehr genaue Aussagen darüber treffen, wie groß und schwer die zwei schwarzen Löcher waren, die bei ihrer Verschmelzung die Gravitationswellen erzeugt haben. Wie schnell rotieren die schwarzen Löcher, wie weit sind sie von der Erde entfernt und aus welcher Richtung kommt die Gravitationswelle? All diese Informationen können wir aus den Beobachtungsdaten ableiten und darüber hinaus Aussagen über die Genauigkeit dieser Berechnung treffen“, erklärt Maximilian Dax vom MPI-IS.
Das Forscherteam trainierte das neuronale Netz mit vielen Simulationen — vorausberechnete Gravitationswellen für hypothetische Doppelsysteme von schwarzen Löchern kombiniert mit dem Rauschen der Detektoren. Auf diese Weise lernt das Netzwerk die Zusammenhänge zwischen den gemessenen Gravitationswellendaten und den Parametern, die das zugrunde liegende System schwarzer Löcher charakterisieren. Es dauert zehn Tage, bis der Algorithmus namens DINGO – Deep Inference for Gravitational-wave Observations – ausgelernt hat. Dann ist er einsatzbereit: in nur wenigen Sekunden leitet das Netzwerk aus den Daten neu beobachteter Gravitationswellen die Größe, die Eigendrehimpulse und alle anderen Parameter ab, die die schwarzen Löcher beschreiben. Die hochgenaue Analyse entschlüsselt fast in Echtzeit die Kräuselungen der Raumzeit – das hat es in dieser Geschwindigkeit und Präzision noch nie gegeben.
„Schnelle Methoden wie die unsere sind unerlässlich, um all diese Daten in angemessener Zeit zu analysieren“, sagt Stephen Green vom AEI. „DINGO hat den Vorteil, dass es – einmal trainiert – neue Ereignisse sehr schnell analysieren kann. Wichtig ist dabei auch, dass es detaillierte Schätzungen der Ungenauigkeit von Parametern liefert, die in der Vergangenheit mit Methoden des maschinellen Lernens nur schwer zu ermitteln waren.“ Bislang verwenden die Forscher der LIGO- und Virgo-Kollaborationen sehr rechenintensive Algorithmen zur Analyse der Daten. Sie benötigen für die Interpretation jeder Messung Millionen neuer Simulationen von Gravitationswellen. Das dauert mehrere Stunden bis Monate – DINGO jedoch ist weitaus schneller, da das trainierte Netzwerk keine weiteren Simulationen für die Analyse neuer Beobachtungsdaten benötigt – ein Verfahren, das als „amortisierte Inferenz“ bekannt ist.
Vielversprechend ist die Methode auch für komplexere Gravitationswellensignale von Kollisionen schwarzer Löcher, deren Analyse mit den bislang verfügbaren Algorithmen sehr lange dauert, sowie für zwei verschmelzende Neutronensterne. Während bei der Kollision von schwarzen Löchern Energie ausschließlich in Form von Gravitationswellen freigesetzt wird, senden verschmelzende Neutronensterne zusätzlich elektromagnetische Strahlung aus. Sie sind daher auch für herkömmliche Teleskope sichtbar, die möglichst schnell auf die entsprechende Himmelsregion ausgerichtet werden müssen, um das Ereignis beobachten zu können. Dazu muss man sehr schnell feststellen, woher die Gravitationswelle kommt, was durch die neue Methode des maschinellen Lernens erleichtert wird. In Zukunft könnten diese Informationen dafür genutzt werden, die Teleskope rechtzeitig auszurichten, um elektromagnetische Signale von Kollisionen von Neutronensternen oder eines Neutronensterns mit einem schwarzen Loch zu beobachten.
MPI-IS / RK
Weitere Infos
- Originalveröffentlichung
M. Dax et al.: Real-Time Gravitational Wave Science with Neural Posterior Estimation, Phys. Rev. Lett. 127, 241103 (2021); DOI: 10.1103/PhysRevLett.127.241103 - Abt. Empirische Inferenz, Max-Planck-Institut für intelligente Systeme, Tübingen
- Abt. Astrophysikalische und kosmologische Relativitätstheorie, Max-Planck-Institut für Gravitationsphysik – Albert-Einstein-Institut, Potsdam