20.02.2019 • Halbleiter

Die Grenzen von Silizium überwinden

Forschungslabor Mikroelektronik für siliziumbasierte Optoelektronik in Cottbus an den Start gegangen.

Kein Computer, kein Auto, kein Personalausweis funktioniert ohne Mikro­elektronik. Für das Auge meist unsichtbar ist sie unter der Produkt­ober­fläche verborgen. Die Herausforderung besteht darin, diese hoch­komplexen elektronischen Systeme in kürzester Zeit zu entwickeln, herzustellen und auf den Markt zu bringen – und das zu einem akzeptablen Preis. Zudem muss die Technologie zuverlässig sowie energie­effizient funktionieren. Durch aktuelle Trends wie die Künstliche Intelligenz, Elektro­mobilität, Diagnose­systeme in der Medizin oder die nachhaltige Energie­versorgung nimmt die Bedeutung der Mikro­elektronik in Zukunft weiter zu.

Abb.: Im ForLab FAMOS stellen die Wissenschaftler um Inga Anita Fischer...
Abb.: Im ForLab FAMOS stellen die Wissenschaftler um Inga Anita Fischer zukünftig neue optoelektronische Bauelemente her, die auf der Integration neuer Materialien basieren. (Bild: BTU Cottbus-Senftenberg)

An der  BTU Cottbus-Senftenberg ist jetzt das neue „Forschungs­labor Mikro­elektronik für silizium­basierte Opto­elektronik“, kurz ForLab FAMOS, an den Start gegangen. Das Forschungs­labor wird bis Ende 2021 mit 2,51 Millionen Euro vom Bundes­ministerium für Bildung und Forschung gefördert. Die Wissenschaftler um Inga Anita Fischer arbeiten an innovativen opto­elektronischen Bauelementen wie beispielsweise Sensoren und integrierte Lichtquellen. Diese ermöglichen eine sichere, schnelle und energie­effiziente Daten­übertragung. Die Einsatz­möglichkeiten reichen von der Notfall­medizin beispielsweise mit schnellen Tests zur Erkennung einer Sepsis über die ultra­schnelle Daten­über­tragung bis hin zur industriellen Prozess­über­wachung etwa zur Prüfung der Qualität von Nahrungs­mitteln.

Bisher basieren die meisten elektronischen Schaltungen auf dem Halb­leiter Silizium. Der Werkstoff ist aufgrund der relativ geringen Herstell­kosten, seiner Kristall­struktur und Spannungs­festigkeit für Anwendungen in der Halb­leiter­industrie prädestiniert. Dennoch stößt die Silizium­technik allmählich an ihre physikalischen Grenzen: Sie ist insbesondere für opto­elektronische Bauelemente ineffizient. Ziel der Forscher ist es daher, neue Materialien in eine Silizium-Plattform zu integrieren. „Erst wenn wir weitere Halbleiter oder Materialien wie Oxide und Polymere auf der Silizium-Plattform integrieren, können wir neue Anwendungs­gebiete erschließen. Wir können damit optische Sensoren herstellen, die weniger Energie verbrauchen als bisher und helfen, die optische Daten­über­tragung zu ermöglichen“, so  Fischer. Gemeinsam mit Jan Ingo Flege, Fachgebiet Angewandte Physik und Halb­leiter­spektro­skopie, und Michael Beck, Fachgebiet Allgemeine Elektro­technik, von der BTU plant Fischer dabei, mit dem Leibniz-Institut für innovative Mikro­elektronik und dem Fraunhofer-Institut für photonische Mikro­systeme zusammen­zu­arbeiten.

BTU / RK

Weitere Infos

 

Veranstaltung

Spektral vernetzt zur Quantum Photonics in Erfurt

Spektral vernetzt zur Quantum Photonics in Erfurt

Die neue Kongressmesse für Quanten- und Photonik-Technologien bringt vom 13. bis 14. Mai 2025 internationale Spitzenforschung, Industrieakteure und Entscheidungsträger in der Messe Erfurt zusammen

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen