Eine neue Art von Nanowelle, die in Kristallen mit geringer Symmetrie aufgrund von optischen Scherkräften entsteht, hat ein internationales Forschungsteam nachgewiesen. Die Ergebnisse bieten neue Möglichkeiten für kompakte optische Technologien, die neue Wege zur Lichtlenkung oder zur optischen Speicherung von Informationen erlauben.
In der Regel benutzt man verschiedene Materialen zur Herstellung optischer Komponenten mit unterschiedlicher Funktion wie zum Beispiel Anti-Reflex-Beschichtungen oder Linsen. Insbesondere Kristalle mit asymmetrischer Struktur sind dabei sehr nützlich, da Licht sich dort auf ungewöhnliche Art ausbreitet, was neue optische Phänomene ermöglicht. Allerdings sind noch nicht alle Arten von Kristallen für photonische Anwendungen erforscht worden. Das Forscherteam hat monokline Beta-Gallium-Oxide untersucht. Die monokline Kristallklasse war bisher für derartige Studien unbeachtet geblieben. Die Wissenschaftler fanden heraus, dass diese Kristalle Scherkräfte auf Licht ausüben, das sich entlang ihrer Oberfläche ausbreitet.
„Mit der Infrarotstrahlung des Freie-Elektronen-Lasers unseres Instituts konnten wir mit unseren Experimenten Spektralbereiche erschließen, die sonst sehr schwer zugänglich sind“, erklärt Alexander Paarmann vom Fritz-Haber-Instituts der Max-Planck-Gesellschaft. „Die Struktur der in unseren Untersuchungen verwendeten monoklinen Kristallen sieht aus wie ein verzerrter Quader, bei dem vier von sechs Seiten rechteckig und zwei gekippte Parallelogramme sind.“ Durch diese Verzerrung laufen die neuen Scherwellen nicht nur sehr gerichtet über die Kristalloberfläche, sondern sind auch nicht mehr spiegelsymmetrisch. „Dank der hyperbolischen Abhängigkeit ihres Wellenvektors von der Ausbreitungsrichtung können wir diese Wellen in winzige Volumina zwängen“, so der Forscher weiter.
Diese hyperbolischen Scherpolaritonen entstehen durch die Kopplung von Infrarotlicht an Gitterschwingungen, also Phononen, an diesen Kristallen. Im Gegensatz zu früheren Beobachtungen von hyperbolischen Phonon-Polaritonen in Kristallen mit symmetrischer Struktur entdeckte das Team neue Eigenschaften der Scherpolaritonen: Ihre Ausbreitungsrichtung hängt von der Infrarot-Wellenlänge ab, und ihre Wellenfronten sind geneigt. Für diese neuen Eigenschaften sind optische Scherkräfte verantwortlich, die ausschließlich durch die niedrigere Kristallsymmetrie und die damit verbundene Ausrichtung der Gitterschwingungen entstehen. Daher spielt die Kristallsymmetrie hier eine fundamentale Rolle.
„Wir erwarten, dass unsere Ergebnisse neue Wege für die Polaritonenphysik in Materialien mit geringer Symmetrie eröffnen, zu denen viele geologische Mineralien und organische Kristalle gehören“, sagt Paarmann. Dadurch wird die Auswahl an Materialien für die technologische Entwicklung deutlich größer, was die Designmöglichkeiten für kompakte photonische Komponenten erheblich verbessern wird. Dies bedeutet einen großen Schritt nach vorne für die Miniaturisierung optischer Schaltungskreise in zukünftigen nanophotonischen Technologien.
FHI / RK
Weitere Infos
- Originalveröffentlichung
N. C. Passler et al.: Hyperbolic shear polaritons in low-symmetry crystals, Nature 602, 595 (2022); DOI: 10.1038/s41586-021-04328-y - Lattice Dynamics (A. Paarmann), Physikalische Chemie, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin